Pearson MS, Woods M, Whiteside GT, Garrison AE, Pomonis JD, Walker K (2004) IB4-SAP reduces IB4 staining in the spinal cord and prevents axotomy induced sprouting of Aβ fibers. Neuroscience 2004 Abstracts 858.6. Society for Neuroscience, San Diego, CA.
Summary: Peripheral nerve injury results in hyperalgesia and allodynia. It has been proposed that sprouting of myelinated touch responsive Aß-fibers into the innervation territory of pain sensitive C-fibers in the spinal cord contributes to these abnormal behaviors. The extent of sprouting has recently been challenged and it has been proposed that C-fibers rather than Aß-fibers are involved. We have investigated whether selectively ablating a population of small diameter nociceptors using isolectin B4 conjugated to saporin (IB4-SAP), reduces axotomy-induced sprouting. Male Sprague-Dawley rats received intraneural injections of either IB4-SAP or PBS (3 µl, 0.66 µg/µl) and two weeks later the sciatic nerve was axotomized at the mid-thigh level. Two weeks later, the sciatic nerve was injected with the retrograde tracer, cholera toxin-ß subunit (CTB) (2 µl, 2%) that selectively traces Aß-fibers. Three days post CTB the animals were perfused, the spinal cord harvested, sectioned and stained immunohistochemically for IB4 and CTB. IB4-SAP treatment resulted in a substantial reduction of IB4 staining in the spinal cord versus PBS injected controls. As previously described, axotomy resulted in considerable CTB immunostaining in laminae I, II and III compared to non-axotomized controls in which it was present only in laminae I and III. IB4-SAP treatment followed by axotomy resulted in a substantial reduction of CTB immunostaining in lamina II compared to PBS injected controls. These results suggest that intraneural IB4-SAP ablates a population of small diameter nociceptors and that axotomy induced CTB staining in lamina II is due to uptake of CTB by C-fibers.
Related Products: IB4-SAP (Cat. #IT-10)
ATS Poster of the Year Winner. Read the featured article in Targeting Trends.