1. Home
  2. Knowledge Base
  3. References
  4. Neuronal correlates of signal detection in rat posterior parietal cortex

Neuronal correlates of signal detection in rat posterior parietal cortex

Broussard JI, Sarter M, Givens B (2004) Neuronal correlates of signal detection in rat posterior parietal cortex. Neuroscience 2004 Abstracts 331.6. Society for Neuroscience, San Diego, CA.

Summary: The posterior parietal cortex (PPC) has been shown to be involved in the attentional processing of visual stimuli. Recent evidence has indicated that neuronal activity in the PPC is increased during the detection of signals, and this activation is modulated by visual distractors. We tested the hypothesis that detected signals are associated with increased PPC unit activity. Animals were trained in a sustained attention task using signal and nonsignal trials. After training to criterion (>75% accuracy), we implanted moveable stereotrodes into the PPC. A visual distractor was presented in a block of trials during testing sessions and effects on performance and single unit activity were examined. We also evaluated the effects of varying signal duration on performance and single unit activity. PPC neurons (39/111) exhibited a significantly greater response during signal trials than during nonsignal trials. The presentation of visual signals produced a robust increase in neuronal activity prior to the performance of a hit, but not prior to a miss, both of which required a lever press. Analysis of signal duration indicated that shorter signals resulted in fewer hits. PPC neurons became active when the signal was accurately detected, independent of signal duration. Shorter signals activated the PPC on fewer trials, which was associated with a lower likelihood for detection. The visual distractor reduced both the signal-driven unit activity and the relative number of hits. These findings suggest that activation of the PPC is associated with the detection of visual signals. We are currently investigating the effects of local cholinergic deafferentation (via 192 IgG saporin) on signal driven neuronal activity in the PPC. These studies will elucidate the contribution of basal forebrain cholinergic innervation to attentional processing in the PPC.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Shopping Cart
Scroll to Top