Kar S, Hawkes C, Jhamandas JH (2004) Selective loss of basal forebrain cholinergic neurons by 192 IgG-saporin induces activation of glycogen synthase kinase-3β activity. Neuroscience 2004 Abstracts 92.2. Society for Neuroscience, San Diego, CA.
Summary: Glycogen synthase kinase-3β (GSK-3β) is a multifunctional enzyme involved in a variety of biological events including development, glucose metabolism and cell death. Its activity is negatively regulated by phosphorylation of Ser9 and upregulated by Tyr216 phosphorylation. Activation of GSK-3β induces apoptosis in a variety of cultured neurons and the inhibitory control of its activity by Akt kinase is one of the best characterized cell survival signaling pathways. In the present study, the cholinergic immunotoxin 192-IgG saporin was used to address the potential role of GSK-3β in the degeneration of the basal forebrain cholinergic neurons which are preferentially vulnerable in Alzheimer’s disease (AD) brain. Our results show that GSK-3β colocalizes with a subset of the forebrain cholinergic neurons and that loss of these neurons is accompanied by a transient decrease in phospho-Akt and phospho-Ser9 GSK-3β levels in the basal forebrain, hippocampus and the cortex. Neither total Akt, GSK-3β, nor phospho-Tyr216 GSK-3β levels were significantly altered in the aforesaid brain regions of treated animals. These results provide the very first evidence that increased GSK-3β activity is associated with in vivo degeneration of the forebrain cholinergic neurons and thus may be involved in the loss of these neurons as observed in AD brains.
Related Products: 192-IgG-SAP (Cat. #IT-01)