1. Home
  2. Knowledge Base
  3. References
  4. Loss of basal forebrain cholinergic neurons by 192 igG-Saporin induces increased IGF-II/M6P receptor expression in select brain areas

Loss of basal forebrain cholinergic neurons by 192 igG-Saporin induces increased IGF-II/M6P receptor expression in select brain areas

Hawkes CA, Kar S (2004) Loss of basal forebrain cholinergic neurons by 192 igG-Saporin induces increased IGF-II/M6P receptor expression in select brain areas. Neuroscience 2004 Abstracts 92.1. Society for Neuroscience, San Diego, CA.

Summary: Alzheimer’s disease (AD) is characterized neuropathologically by the presence of extracellular amyloid plaques, intracellular neurofibrillary tangles and neuronal loss in selected brain areas, including basal forebrain cholinergic neurons, which project to the hippocampus and neocortex. Increasing evidence supports a role of the endosomal-lysosomal (EL) system in the pathophysiology of AD. A key component of the EL system is the insulin-like growth factor-II/mannose-6-phosphate (IGF-II/M6P) receptor, a single transmembrane domain glycoprotein which functions in the intracellular trafficking of lysosomal enzymes, and in the internalization of extracellular IGF-II and M6P-containing ligands. However, very little is known about the functional significance of this receptor in the brain. We examined expression of the IGF-II/M6P receptor and other markers of the EL system, at different time points following bilateral i.c.v. injection of 192 IgG-saporin. 192 IgG-saporin produced an almost complete loss of ChAT-positive neurons in the basal forebrain, as well as fibers in the hippocampus and frontal cortex, while striatal cholinergic neurons were unaffected. Western blotting and immunocytochemistry results indicate an upregulation of IGF-II/M6P receptor levels in the septum and frontal cortex. A modest increase was also observed in cathepsin D levels. The level of other EL markers, such as Rab5 and LAMP1, showed varied temporal and spatial changes. These results suggest that brain areas innervated by basal forebrain neurons, respond differently to the loss of cholinergic input and that elements of the EL system may be involved in cholinergic degeneration/compensatory responses of surviving neurons.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Shopping Cart
Scroll to Top