1. Home
  2. Knowledge Base
  3. References
  4. Characterization of an immunotoxin model of Parkinson’s disease in mice

Characterization of an immunotoxin model of Parkinson’s disease in mice

Stead S, Trottier N, Doering LC (2005) Characterization of an immunotoxin model of Parkinson’s disease in mice. Neuroscience 2005 Abstracts 664.9. Society for Neuroscience, Washington, DC.

Summary: The primary event underlying the motor deficits of Parkinson’s disease (PD) is degeneration of neurons in the nigro-striatal system. The most widely employed laboratory rodent models of Parkinson’s are the neurotoxin 6-hydroxydopamine (6-OHDA) model that causes acute degeneration of the dopamine neurons in the substantia nigra (SN) and the MPTP mouse model. To date, there is no single model which accurately simulates the pathogenic, histological, biochemical and clinical features relevant for the investigation of PD. Toxins conveyed by axonal transport can be used to make selective lesions in the central nervous system. As previously shown in rats (Wiley et al., Cell. Mol. Biol., 2003), we have found that selective degeneration of the SN can be induced with an immunotoxin consisting of the highly active ribosome inactivating protein Saporin linked to an antibody to the dopamine transporter. A unilateral stereotaxic injection of anti-DAT-Saporin (0.25ug/2ul and 0.05ug/2ul) into the striatum of young (6-8 weeks old) female C57BL6 mice causes a progressive reduction in the number of DA neurons in the SN in comparison to the non-lesioned hemisphere and in various controls. Furthermore, in parallel to the immunohistochemical dopamine neuron death, the animals display a pronounced circling behaviour when challenged with apomorphine (3mg/kg). We are currently examining the affected brain sections for inclusion bodies and changes in astrocytes. This model exhibits the selective deterioration of the nigro-striatal system that occurs in Parkinson’s disease and provides a system to intervene at various stages of dopamine neuron loss and evaluate the effectiveness of stem cell therapy.

Related Products: Anti-DAT-SAP (Cat. #IT-25)

Shopping Cart
Scroll to Top