Kalinchuk AV, Stenberg D, Rosenberg PA, Porkka-Heiskanen T (2005) On the role of the basal forebrain cholinergic neurons in regulation of recovery sleep. Neuroscience 2005 Abstracts 308.8. Society for Neuroscience, Washington, DC.
Summary: Basal forebrain (BF) is an critical site in regulation of propensity for sleep (Porkka-Heiskanen et al., 2000; Kalinchuk et al., 2003).We have recently shown that development of recovery sleep after sleep deprivation (SD) might be mediated by release of nitric oxide (NO) in the BF during SD (Kalinchuk et al., 2003; 2004). To further elucidate the role of BF neuronal mechanisms in regulation of NO-mediated recovery sleep we selectively destroyed BF cholinergic neurons and compared effects of SD and pharmacologically increased NO level (induced by NO donor infusion) to the effects observed in intact animals. Male rats were implanted with electrodes for EEG/EMG recording and guide cannulae for microdialysis probes targeting the BF. The experimental schedule for each rat included: recording of natural sleep-waking cycle; SD for 3h; infusion of NO donor (DETA NONOate) for 3h. In separate group of rats immunotoxin 192 IgG-saporin was injected into the BF and the same experimental schedule was performed. After the end of experiments brains were taken for validation of the quality of cholinergic cells lesion and/or probes locations. In all intact rats SD induced significant increase in subsequent NREM sleep by 30.2±3%. Infusion of DETA NONOate into the BF increased sleep by 35.2±4%. Relative delta power was increased by 44.4±8% and 44.1±19%, respectively. After lesion of the BF cholinergic cells recovery NREM sleep after SD was significantly attenuated (9.5±3% increase as compared with baseline). Effect of DETA NONOate infusion was also inhibited (3.1±4% decrease as compared with baseline). Increases in relative delta power were totally abolished. Our data allow to conclude that cholinergic neurons in the BF play an important role in regulation of SD-induced recovery sleep which is mediated by release of NO.
Related Products: 192-IgG-SAP (Cat. #IT-01)