1. Home
  2. Knowledge Base
  3. References
  4. Neuroprotective effects of testosterone in two models of spinal motoneuron injury

Neuroprotective effects of testosterone in two models of spinal motoneuron injury

Sengelaub DR, Osborne MC, Little CM, Huyck KD, Verhovshek T (2006) Neuroprotective effects of testosterone in two models of spinal motoneuron injury. Neuroscience 2006 Abstracts 683.12. Society for Neuroscience, Atlanta, GA.

Summary: Following induced death or axotomy of spinal motoneurons remaining motoneurons atrophy, but this atrophy can be reversed or prevented by treatment with testosterone (T). For example, partial depletion of motoneurons from the highly androgen-sensitive spinal nucleus of the bulbocavernosus (SNB) induces dendritic atrophy in remaining motoneurons, and this atrophy is prevented by treatment with T. To test whether T has similar effects in more typical motoneurons, we examined potential neuroprotective effects in motoneurons innervating muscles of the quadriceps. Motoneurons innervating the vastus medialis muscle were selectively killed by intramuscular injection of cholera toxin conjugated saporin. Simultaneously, some saporin-injected rats were given implants containing T or left untreated. Four weeks later, motoneurons innervating the ipsilateral vastus lateralis muscle were labeled with cholera toxin conjugated HRP, and dendritic arbors were reconstructed in 3 dimensions. Compared to intact control males, partial motoneuron depletion resulted in decreased dendritic length (70%) and soma size (13%) in remaining quadriceps motoneurons, but as in the SNB, this atrophy was attenuated by T treatment. In a second model, brain-derived neurotrophic factor (BDNF) and T have a combinatorial effect in the maintenance of motoneurons after axotomy in that dendritic morphology is supported by BDNF treatment, but only in the presence of T. Using immunohistochemical methods, we examined the regulation of the expression of the BDNF receptor, trkB, by T. In both the highly androgen-sensitive motoneurons of the SNB and the more typical quadriceps motoneurons, the expression of trkB receptors was regulated by the presence of T. Motoneurons of castrated animals deprived of T show reduced expression of trkB receptors compared to motoneurons of intact animals or castrated animals given T replacement. This finding suggests that maintenance of trkB receptors with T may be necessary to permit the trophic effects of BDNF in supporting dendritic morphology after axotomy. Together, these findings suggest that T regulates neuroprotective effects through a variety of mechanisms, not only in highly androgen-sensitive motoneurons, but in more typical motoneuron populations as well.

Related Products: CTB-SAP (Cat. #IT-14)

Shopping Cart
Scroll to Top