Kline IV RH, Wiley RG (2006) Role of spinal cord µ-opioid receptor expressing dorsal horn neurons in morphine analgesia. Neuroscience 2006 Abstracts 643.19. Society for Neuroscience, Atlanta, GA.
Summary: The role of spinal cord μ-opioid receptor expressing dorsal horn neurons in morphine analgesia is not clearly understood. Using lumbar intrathecal (i.t.) injections of the targeted toxin dermorphin-saporin to selectively destroy these cells, we sought to determine the effect of this lesion on the antinociceptive activity of systemic and i.t. morphine on the hotplate test. We examined the antinociceptive effects of morphine across a range of stimulus intensities (44, 47 & 52oC) in order to assess responses mediated by C or Aδ thermal nociceptors. Experiment 1 (systemic morphine): Sixteen Sprague Dawley male rats were injected with 500ng dermorphin-saporin i.t. or PBS and hotplate testing resumed one week after injections. Baseline hotplate responses were monitored for three weeks after which systemic morphine dose response curves (0, 2.5, 5, &10 mg/kg s.c.) were performed. Experiment 2 (spinal intrathecal morphine): Twelve Long Evans female rats were surgically implanted with indwelling lumbar i.t. catheters (8.5cm), underwent baseline hotplate testing for 7 days, had i.t. morphine dose response curves (0, 0.01, 0.1, & 1 μg) performed at 44 & 52oC seven days before and eight days after dermorphin-saporin injections. The dependent measures for the hotplate test were: 1) latencies to the first lick or guard response (all temperatures) and 2) the cumulative durations and amounts of licking and guarding events (44 and 47oC). Loss of lamina II MOR-expressing dorsal horn neurons after dermorphin-saporin was confirmed in spinal cord sections from each rat stained for MOR1 and MOR1C using standard immunoperoxidase techniques on adjacent 40 μm sections from the L4 spinal segment. Baseline responses to noxious heat did not decrease after i.t. dermorphin-saporin. The antinociceptive activity of systemic morphine was attenuated in dermorphin-saporin treated rats at 44 & 47oC; this effect was least striking on the 52oC hotplate and greatest on the 44oC hotplate. The dermorphin-saporin-induced lesion reduced the antinociceptive effects of intrathecal morphine more than systemic morphine. Based on the above findings are others not included here, we conclude that dorsal horn MOR expressing neurons are necessary for morphine to exert its maximum antinociceptive and analgesic effects.
Related Products: Dermorphin-SAP / MOR-SAP (Cat. #IT-12)