Pasumarthi RK, Fadel J (2006) Anatomical and neurochemical mediators of nicotine-induced activation of orexin neurons. Neuroscience 2006 Abstracts 369.22. Society for Neuroscience, Atlanta, GA.
Summary: Orexin/hypocretin neurons of the lateral hypothalamus and contiguous perifornical area (LH/PFA) are important for state-dependent behavior and metabolic regulation. These neurons are activated-as indicated by Fos expression-by a variety of psychostimulant drugs including nicotine. Previously, we have shown that acute nicotine-induced activation of orexin neurons can be blocked by either the non-selective nicotinic antagonist mecamylamine or the selective α4β2 antagonist dihydro-beta-erythroidine (DHβE). However, the hypothalamic afferents and neurotransmitters mediating nicotine-elicited activation of orexin neurons remain to be established. Since the LH/PFA is rich in glutamatergic and cholinergic inputs, we performed in vivo microdialysis to determine the effect of both systemic and local nicotine on release of glutamate and acetylcholine (ACh) in this region of the hypothalamus. Local nicotine administration (100 μM; 2.0 mM) increased ACh and glutamate release in the LH/PFA. Furthermore, in a separate experiment, nicotine-elicited Fos expression in orexin neurons was reduced by either ibotenic acid lesions of the prefrontal cortex (PFC), which provides a substantial glutamatergic input to the hypothalamus, or by cholino-selective (192 IgG saporin) lesions of the basal forebrain. Collectively, these data suggest that glutamatergic inputs from the PFC and cholinergic inputs from the basal forebrain may act cooperatively to mediate the effect of acute nicotine on orexin neurons. Neural circuitry linking orexin neurons with the basal forebrain, PFC and PVT is likely to contribute to the effects of nicotine on wakefulness and attention.
Related Products: 192-IgG-SAP (Cat. #IT-01)