Farovik A, Brown VJ (2006) Basal forebrain cholinergic lesions impair endogenous covert orienting of attention in the rat. Neuroscience 2006 Abstracts 369.19. Society for Neuroscience, Atlanta, GA.
Summary: The cholinergic system plays an important role in attention, including covert orienting of spatial attention. Covert orienting of attention results in faster reaction times and also fewer errors if attention is directed towards target location by a preceding cue compared to when a cue misdirects attention away from the upcoming target location. This differential effect of the cue on performance is called the ‘validity effect’ (Posner, 1980 Q J E P 32:3-25) and it reflects the benefit of directed attention and the cost of needing to redirect attention from one location to another. Covert orienting can be exogenously cued (e.g., a visual event) or endogenously cued (e.g., a ‘cognitive’ cue indicating the probable target location). In the rat, covert orienting has been demonstrated using exogenous cues, but not, to date, endogenous cues. We used a reaction time task to examine the effects of basal forebrain cholinergic lesions on endogenously cued covert attention. Rats made a directional (left or right) response according to the spatial location (left or right) of target. The probable location of the target varied as a function time, such at shorter foreperiods, there was a greater probability of a left target while at longer foreperiods, right targets were more probable. Reaction time was linearly related to the a priori target probability, reflecting directed attention. Eleven rats received bilateral injections of the selective immunotoxin 192-IgG saporin (0.25µg/µl) into the basal forebrain at coordinates AP – 0.7 ML ± 2.9 DV – 6.7 (from dura). Eleven control rats received injections of vehicle. Overall, the lesion did not impair accuracy of performance, however, the reaction times no longer reflected attentional orienting in lesioned animals. Lesioned animals continued to show delay-dependent speeding prior to the target similar to controls, suggesting that changes in reaction times were not due to effects on motor readiness. We conclude that endogenous attentional orienting reflects a different, and independent, process from that of response preparation and that normal cholinergic function is required for the former but not the latter.
Related Products: 192-IgG-SAP (Cat. #IT-01)