Howe WM, Burk JA (2006) Effects of cholinotoxic and excitotoxic posterior parietal cortical lesions on attention in rats. Neuroscience 2006 Abstracts 369.18. Society for Neuroscience, Atlanta, GA.
Summary: Basal forebrain corticopetal cholinergic neurons are necessary for normal attentional processing. However, the interactions of acetylcholine with processing mediated by particular cortical regions remain unclear. The posterior parietal cortex has been implicated in models of attention, including the ability to attend selectively to target stimuli when distracting stimuli are presented. In the present experiment, rats were trained to perform a two-lever attention task that required discrimination of visual signals and trials when no signal was presented. Animals then received infusions of the cholinotoxin, 192IgG-saporin, the excitotoxin, n-methyl-D-aspartate, or vehicle into the posterior parietal cortex (n=9/group). Postsurgically, rats were tested for 30 sessions in the same task trained before surgery followed by 30 sessions with the houselight flashed one sec prior to a signal or non-signal. Lesions did not differentially affect performance in the task tested immediately following surgery. However, when the houselight was flashed prior to the signal or non-signal, both lesion groups were differentially affected compared to sham-lesioned animals. Sham-lesioned animals showed a decrease in the latency to press a lever following lever extension when the houselight was flashed compared to sessions when it was not flashed. However, cholinotoxic lesioned animals did not show this effect. Furthermore, planned comparisons revealed an elevated omission rate for excitotoxic lesioned animals compared to sham-lesioned animals during sessions when the houselight was flashed. The present data support the idea that the posterior parietal cortex and its cholinergic afferents from the basal forebrain are necessary for maintaining attentional performance when task irrelevant stimuli are presented.
Related Products: 192-IgG-SAP (Cat. #IT-01)