1. Home
  2. Knowledge Base
  3. References
  4. Immunotoxin lesion of cholinergic nucleus basalis magnocellularis neurons in Lister hooded rats impair performance in a delayed matching-to-place task

Immunotoxin lesion of cholinergic nucleus basalis magnocellularis neurons in Lister hooded rats impair performance in a delayed matching-to-place task

Savage S, Ogren S, Olson L, Mattsson A (2007) Immunotoxin lesion of cholinergic nucleus basalis magnocellularis neurons in Lister hooded rats impair performance in a delayed matching-to-place task. Neuroscience 2007 Abstracts 840.1/TT24. Society for Neuroscience, San Diego, CA.

Summary: Central cholinergic systems play an important role in various aspects of cognition, and deficits in cortical cholinergic function have been implicated in the cognitive impairments associated with normal aging and dementia. Cholinergic dysfunctions have also been implicated in several neuropsychiatric disorders, including schizophrenia. Though cognitive dysfunctions, such as impaired working memory, are observed in Alzheimer, as well as schizophrenic patients, the cholinergic mechanisms behind these dysfunctions are not well characterized in animal models. To investigate whether specific cortical cholinergic deficits will affect spatial learning and memory functions, we lesioned the basalo-cortical cholinergic system by stereotaxic infusion of the immunotoxin 192 IgG-saporin in the nucleus basalis magnocellularis (NBM) of adult male Lister hooded rats. Learning and memory was assessed using a delayed matching-to-place (DMP) paradigm in the water maze. We found that animals with cholinergic denervation of neocortex were impaired in the DMP-task. Thus, while the sham-operated animals rapidly learned the task without prior training, saporin-treated rats showed impairment during the initial three days of testing. By the end of the testing period, the lesioned animals had acquired the task. However, the cholinergically denervated animals showed a performance deficit throughout the duration of the experiment with higher trial latencies and longer distance traveled to find the platform as compared to the controls. They also seemed to employ a different strategy to find the hidden platform as compared to control animals. Whether the deficits after cholinergic lesions to the NBM seen in the present experiment are mnemonic and/or attentional in nature remains to be elucidated.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Shopping Cart
Scroll to Top