1. Home
  2. Knowledge Base
  3. References
  4. Vestibular activation stimulates cholinergic system in the hippocampus

Vestibular activation stimulates cholinergic system in the hippocampus

Tai S, Ma J, Leung L (2007) Vestibular activation stimulates cholinergic system in the hippocampus. Neuroscience 2007 Abstracts 399.21/OO13. Society for Neuroscience, San Diego, CA.

Summary: The vestibular system has been suggested to participate in spatial navigation, a function ascribed to the hippocampus. We examined the mechanisms that induced hippocampal theta, a 4-10 Hz rhythm in the electroencephalogram (EEG), during vestibular activation in rats. Freely behaving rats were rotated at various speeds, on a vertical axis, in the light or dark. Hippocampal EEGs were recorded by implanted electrodes in hippocampal CA1, and analyzed by spectral analysis. A clear hippocampal theta rhythm was induced during immobility by rotations at different speeds (20-70 rpm). The rotation-induced theta was abolished, in light and dark settings, by muscarinic cholinergic receptor antagonist atropine sulfate (50 mg/kg i.p.) but not by atropine methyl nitrate (50 mg/kg i.p.), which did not pass the blood-brain barrier. Rotation-induced theta was attenuated in rats in which the cholinergic neurons in the medial septum (MS) were lesioned by 192 IgG-saporin (0.14 µg/0.4 µl infused bilaterally into the MS 10-20 days prior to the experiments). Cholinergic lesion in the MS was confirmed by a depletion of MS neurons that stained positively for choline acetyltransferase and an absence of acetylcholinesterase histochemical staining in the hippocampus. Bilateral lesion of the vestibular receptors (by 0.1 ml intratympanic injection of 300 mg/ml sodium arsanilate) also attenuated the rotation-induced theta rhythm. Vestibular lesion was confirmed by the contact righting test where lesioned rats will “walk” upside down on a Plexiglas sheet placed in contact with the soles of the feet while intact rats will right themselves immediately. In summary, an atropine-sensitive hippocampal theta is activated by septohippocampal cholinergic neurons which are in turn activated by vestibular stimulation. Vestibular-activated septohippocampal cholinergic activity is likely an important component of spatial navigation.

Related Products: 192-IgG-SAP (Cat. #IT-01)

Shopping Cart
Scroll to Top