1. Home
  2. Knowledge Base
  3. References
  4. Analysis of inhibitory phase of formalin test: Effects of specific neural lesions

Analysis of inhibitory phase of formalin test: Effects of specific neural lesions

Wiley RG, Moore SA, Kline IV RH (2008) Analysis of inhibitory phase of formalin test: Effects of specific neural lesions. Neuroscience 2008 Abstracts 772.4/MM19. Society for Neuroscience, Washington, DC.

Summary: The formalin test has been widely used as a model of persistent pain. The 90 mins of formalin-induced nocifensive responding can be divided into two phases (phase 1, first ~10 mins; phase 2, last ~60 mins) separated by a period of reduced responding (interphase, IP), that has received relatively little attention. Behavioral inhibition during the IP of the formalin test has been associated with electrophysiological evidence of inhibition of dorsal horn nociceptive neurons (Henry et al, Pain, 82:57, 1999), probably due, at least in part, to local spinal mechanisms. Behavioral inhibition during IP has been shown to be enhanced by morphine and suppressed by naloxone. In the present study, we sought to determine the effect of selective depletion of specific dorsal horn interneurons known to be involved in nociception, i.e. neurons expressing NPY1R, GalR1 or MOR, or selective destruction of cerebral noradrenergic neurons or spinal cord projecting 5-HT neurons on formalin-induced nociceptive behavior, with particular attention to IP. Type-selective lesions were produced by lumbar intrathecal injection of NPY-saporin, galanin-saporin or dermorphin-saporin, respectively. Cerebral noradrenergic neurons and spinally projecting 5-HT neurons were destroyed using the immunotoxins, anti-DBH-saporin (intracerebroventricular) or anti-SERT-saporin (lumbar intrathecal), respectively. Partial loss of dorsal horn interneurons expressing NPY1R or GalR1 decreased nocifensive responding during IP and phase 2 of the formalin test, while partial loss of MOR-expressing dorsal horn interneurons increased nocifensive responding during IP and during phase 2. Both antiDBH-sap and antiSERT-sap decreased responding during IP, without effects on either phase 1 or 2. These results suggest that the apparent anti-nociception during IP and phase 2 produced by loss of NPY1R- and GalR1-expressing dorsal horn neurons is due to increased inhibition over excitation/facilitation of nociceptive projection neurons, whereas depletion of MOR-expressing interneurons produces the opposite effect. The apparent enhanced nociception during IP, but not phase I and II, produced by anti-DBH-sap and anti-SERT-sap suggests that these neural systems serve to enhance the excitability of nociceptive projection neurons during the formalin IP. Electrophysiologic and pharmacologic studies of formalin IP in selectively lesioned animals combined with the above behavioral findings may reveal new insights into endogenous modulation of nocifensive motor responses and/or nociception.

Related Products: NPY-SAP (Cat. #IT-28), Anti-SERT-SAP (Cat. #IT-23), Galanin-SAP (Cat. #IT-34), Anti-DBH-SAP (Cat. #IT-03), Dermorphin-SAP / MOR-SAP (Cat. #IT-12)

Shopping Cart
Scroll to Top