1. Home
  2. Knowledge Base
  3. References
  4. The effects of a combination of antioxidants and essential fatty acids as treatment for Alzheimer’s disease in the mu-p75 saporin-injected model

The effects of a combination of antioxidants and essential fatty acids as treatment for Alzheimer’s disease in the mu-p75 saporin-injected model

Matchynski JJ, Lowrance SA, Rossignol J, Dekorver NW, Puckett ND, Pappas CA, Trainor KJ, Delongchamp JL, Radwan J, Heldt JC, Dey ND, Dunbar GL (2010) The effects of a combination of antioxidants and essential fatty acids as treatment for Alzheimer’s disease in the mu-p75 saporin-injected model. Neuroscience 2010 Abstracts 856.15/I21. Society for Neuroscience, San Diego, CA.

Summary: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is marked by a progressive loss of memory and affects over five million people nationwide (Alzheimer’s Association, 2010). It is characterized by an increase in oxidative stress, amyloid plaques, neurofibrillary tangles, and the loss of cholinergic neurons. Mice injected with the ribosome deactivating protein, mu-p75 saporin, model the deficits in memory, loss of cholinergic neurons, and increased oxidative stress observed in AD. The current study aimed to decrease the deficits observed in the saporin mouse model using a combination of antioxidants from tart cherries and essential fatty acids, Cerise© total body rhythm (TBR). Mice dosed with TBR or methylcellulose were given bilateral ventricular injections of phosphate buffer saline or saporin. Memory and motor functioning were then measured in a series of behavioural tests. Results indicate that TBR decreased the memory deficits observed in object recognition, place recognition, and Morris-water-maze tasks, as well as the inflammatory response and loss of cholinergic neurons in the medial septum. The findings suggest that TBR could provide an effective, adjunctive treatment that may delay the onset or decrease the severity of AD.

Related Products: mu p75-SAP (Cat. #IT-16)