1. Home
  2. Knowledge Base
  3. References
  4. Damage of GABAergic neurons in the medial septum-diagonal band (MSDB) reduces behaviorally-activated hippocampal acetylcholine efflux and impairs spatial working memory

Damage of GABAergic neurons in the medial septum-diagonal band (MSDB) reduces behaviorally-activated hippocampal acetylcholine efflux and impairs spatial working memory

Roland JJ, Janke KL, Savage LM, Servatius RJ, Pang KCH (2010) Damage of GABAergic neurons in the medial septum-diagonal band (MSDB) reduces behaviorally-activated hippocampal acetylcholine efflux and impairs spatial working memory. Neuroscience 2010 Abstracts 611.13/MMM64. Society for Neuroscience, San Diego, CA.

Summary: The septohippocampal pathway is mostly composed of cholinergic and GABAergic projections and has an established role in learning, memory and disorders of cognition. Most studies have focused on the role of the cholinergic system in learning, memory and disorders of cognition. Although MSDB cholinergic lesions do not result in learning impairments, changes in hippocampal acetylcholine (ACh) levels have been tied to memory functions where deficits or enhancements in memory were correlated with hippocampal ACh decreases or increases, respectively. The activity of MSDB cholinergic neurons is greatly influenced by GABAergic afferents, including those from GABAergic neurons within the MSDB. Recently, we’ve demonstrated that toxins that preferentially damage MSDB GABAergic neurons impair delayed match to position tasks, but not spatial reference memory. Interpretation of these results needs to take into account the fact that a MSDB GABAergic lesion would influence both septohippocampal cholinergic and GABAergic transmission. The current study examined the effect of MSDB GABAergic lesions on spontaneous alternation (Experiment 1) and a non-matching to position task (NMTP; Experiment 2) while concurrently using in vivo microdialysis to measure hippocampal ACh efflux. Adult male Sprague-Dawley rats received vehicle (PBS) or GABAergic (GAT-1 saporin) MSDB lesion and a hippocampal microdialysis cannula. In Experiment 1, treatment groups did not differ in terms of activity, alternation rates, or baseline and maze-activated ACh efflux. In Experiment 2, hippocampal ACh efflux was measured at two time points (early and late) across the acquisition of a delayed NMTP task. Overall, GAT1-saporin treated rats had lower accuracy scores across 10 days of maze training compared to the vehicle treated rats. Basal ACh release in the hippocampus was similar in vehicle and GAT1-saporin rats. During the two microdialysis sampling points, both groups of rats displayed significant increases in ACh efflux while performing the task. However, behaviorally activated ACh efflux was reduced in GABA-lesioned animals compared to vehicle treated rats. The results demonstrate that MSDB GABAergic lesions do not alter basal hippocampal ACh efflux, but can reduce ACh efflux when challenged cognitively. Future studies will attempt to determine whether reduced ACh efflux is due to damage of MSDB GABAergic neurons or a result of impaired working memory performance.

Related Products: GAT1-SAP (Cat. #IT-32)

Shopping Cart
Scroll to Top