1. Home
  2. Knowledge Base
  3. References
  4. The role of descending facilitation in the initiation and maintenance of mechanical hypersensitivity following inflammation

The role of descending facilitation in the initiation and maintenance of mechanical hypersensitivity following inflammation

Carr F, Géranton SM, Hunt SP (2011) The role of descending facilitation in the initiation and maintenance of mechanical hypersensitivity following inflammation. Neuroscience 2011 Abstracts 702.10. Society for Neuroscience, Washington, DC.

Summary: Central sensitisation is the key mechanism involved in the generation of mechanical hypersensitivity associated with tissue injury. Dorsal horn excitability is subject to regulation by descending modulation via the rostral ventromedial medulla (RVM) and enhanced descending facilitation under conditions of persistent nociceptive input contributes to the maintenance of mechanical hypersensitivity in chronic pain states. Depletion of mu-opioid receptor expressing (MOR+) cells of the RVM and depletion of spinal serotonin have been used previously to demonstrate the contribution of descending facilitation to the maintenance of neuropathic pain. Here we have used the same ablation techniques to investigate the contribution of descending pathways to the initiation and maintenance of mechanical hypersensitivity associated with ankle joint inflammation. Male Sprague-Dawley rats (215-220g at the time of injection) received bilateral microinjections of the selective cytotoxin dermorphin-saporin (1.5pM each side). 28 days later the animals received either an injection of 10μl Complete Freund’s Adjuvant (CFA) to the left ankle joint or underwent a sham procedure. Mechanical hypersensitivity of the hindpaw plantar surface was assessed using von Frey hairs from 2 hours up to 8 days post CFA injection. In a separate group of rats (160-180g at the time of injection) depletion of spinal serotonin was out carried out by intrathecal administration of 5,7-dihydroxytrptamine (5,7-DHT). Animals received either 10 μl of 5,7-DHT in saline (6μg/μl) or vehicle control. 6 days later animals received either CFA injection or underwent a sham procedure and mechanical hypersensitivity was assessed as in the dermorphin-saporin experiment. Depletion of the MOR+ cells of the RVM and of spinal serotonin was confirmed using immunohistochemistry. Dermoprhin-saporin pre-treatment resulted in significantly increased paw withdrawal thresholds from 6 hours up to 8 days following CFA injection (p < 0.01, ANOVA with repeated measures). In contrast depletion of spinal serotonin by 5,7-DHT led to a smaller attenuation of mechanical hypersensitivity at 24 hours and 48 hours following inflammation (LSD post hoc test, p < 0.01) but did not result in significantly increased paw withdrawal thresholds at the earlier time points.

Related Products: Dermorphin-SAP / MOR-SAP (Cat. #IT-12)

Shopping Cart
Scroll to Top