Lee S-Y, Kim M-S, Han J-S (2013) Activation of NF-κB signaling in the hippocampus without cholinergic input was aggravated by chronic stress. Neuroscience 2013 Abstracts 717.18. Society for Neuroscience, San Diego, CA.
Summary: Previous studies have demonstrated that loss of cholinergic input to hippocampus contributes dysfunction of HPA axis and alters GR-PKA-NF-κB signaling in hippocampus. In the hippocampus without cholinergic input, interactions of GR and PKA are decreased, whereas interactions of PKA and NF-κB are increased and phosphorylations on Ser276 of NF-κB p65 are increased. On the other hand, activation of NF-κB p65 is associated with behavioral action of stress and depression. The present research was conducted to examine whether NF-κB activation induced by cholinergic lesions is aggravated in response to chronic stress. Young adult rats received immunotoxic lesions of basal forebrain cholinergic neurons by intracranial injections of 192 IgG-saporin into the medial septum/vertical limb of the diagonal band and substantia innominata/nucleus basalis. After 2 weeks recovery from surgery, rats with cholinergic lesions and vehicle-injected control rats were subjected to 1 hr restraint stress per day for 2 weeks. We examined that cholinergic deafferentation induced alterations in GR and NF-κB p65 expression in hippocampus and prefrontal cortex. Rats with cholinergic deafferentation and chronic stress showed more activation of NF-κB p65 signaling in the hippocampus compared with rats with cholinergic deafferentation only. Thus the loss of cholinergic integrity during aging and in AD might increase proneness to chronic stress.
Related Products: 192-IgG-SAP (Cat. #IT-01)