1. Home
  2. Knowledge Base
  3. References
  4. Is selective hippocampal cholinergic deafferentation sufficient to produce temporally graded retrograde amnesia?

Is selective hippocampal cholinergic deafferentation sufficient to produce temporally graded retrograde amnesia?

Köppen JR, Stuebing SS, Sieg M, Blackwell AA, Blankenship P, Grisley ED, Cheatwood JL, Wallace DG (2014) Is selective hippocampal cholinergic deafferentation sufficient to produce temporally graded retrograde amnesia?. Neuroscience 2014 Abstracts 749.20. Society for Neuroscience, Washington, DC.

Summary: Dementia of the Alzheimer’s type (DAT) is a neurodegenerative disorder marked by degeneration of basal forebrain structures and is associated with significant mnemonic deficits. The current study used a rat string-pulling task to evaluate whether selective cholinergic deafferentation of the hippocampus is sufficient to produce temporally graded retrograde amnesia. Female rats were pre-trained to pull strings to obtain reinforcement (cashew). Subsequently, rats were trained to discriminate between two scented strings. One scented string was consistently reinforced (+A), while the other scented string was never reinforced (B). After rats met criterion, they either waited two weeks (recent) or six weeks (remote) prior to receiving a sham surgery or infusion of 192-IgG-Saporin into the medial septum. Two weeks later rats were given four days of reversal training during which they experienced the same scented strings; however, the cashew was at the end of the string that was not previously reinforced. Following reversal training, rats were trained on a novel discrimination (+C/D). The results of the current study are consistent with selective cholinergic deafferentation of the hippocampus being sufficient to produce retrograde amnesia that was not temporally graded. First, all rats met criterion in a similar number of days. Rats receiving infusion of 192-IgG-Saporin into the medial septum had a higher number of correct responses during reversal training, relative to sham rats; however, no group differences were observed between recent and remote groups. Next, there were no group differences in the ability to learn a new discrimination. Finally, no group differences we observed in the latency to approach and pull up the string. The results were not caused by deficits in motivation or motor function, but they do reflect impairments in mnemonic function. The current study provides a novel behavioral assessment technique that models the retrograde amnesia characteristics observed in DAT.

Related Products: 192-IgG-SAP (Cat. #IT-01)