1. Home
  2. Knowledge Base
  3. References
  4. Spatial long-term memory and modulation of NMDA receptor subunit expression in medial septal immunolesioned rats

Spatial long-term memory and modulation of NMDA receptor subunit expression in medial septal immunolesioned rats

Kruashvili L, Mepharishvili M, Dashniani M, Burjanadze M, Demurishvili M (2014) Spatial long-term memory and modulation of NMDA receptor subunit expression in medial septal immunolesioned rats. Neuroscience 2014 Abstracts 463.19. Society for Neuroscience, Washington, DC.

Summary: The present study was designed to investigate the effect of selective immunolesions of cholinergic and GABA-ergic SH projection neurons (using 192 IgG-saporin and GAT-1 saporin, respectively) on spatial memory assessed in water maze and the N-methyl-D-aspartate (NMDA) receptor GluN2B subunit expression in the rat hippocampus. We used water maze training protocol with eight training trials. One day after training, probe test with the platform removed was performed to examine long-term spatial memory retrieval. We found that immunolesion of medial septal cholinergic neurons did not affect spatial learning as exhibited by a decreased latency to find the hidden platform across the eight training trials. In contrast, rats with immunolesions of medial septal GABAergic neurons did not show a decreased latency across training trials in water maze. Trained control rats spent significantly longer than chance (15 s) performances such as swimming time in test sector (where the hidden platform was located). Moreover, they spent significantly longer in test sector than in the opposite sector, confirming the establishment of long-term memory. In contrast, the preference for test sector was abolished in medial septal immunolesioned rats. Because Saporin treated rats learned the location of the hidden platform during training, the results suggest that saporin treated rats could not remember the training a day later. We found that the expression level of NR2B subunit of NMDA receptor in the hippocampus was decreased significantly in the GAT-1 treated group compared with the control and saporin treated groups. In conclusion, our findings suggest that immunolesion of medial septal GABAergic neurons can interrupt hippocampus[[unable to display character: ‐]]dependent spatial learning, possibly through modulation of NMDA receptor subunit expression in the hippocampus. Moreover, our finding that selective lesions of medial septal cholinergic neurons affects probe-test performance but not spatial learning, suggests that septohippocampal cholinergic projections are involved specifically in the consolidation or retrieval, but not in the acquisition of long-term spatial memory.

Related Products: 192-IgG-SAP (Cat. #IT-01), GAT1-SAP (Cat. #IT-32)

Shopping Cart
Scroll to Top