1. Home
  2. Knowledge Base
  3. References
  4. Gastrointestinal vagal afferent signaling promotes hippocampal-dependent memory function in rats

Gastrointestinal vagal afferent signaling promotes hippocampal-dependent memory function in rats

Suarez AN, Hsu TM, DeLartigue G, Kanoski SE (2017) Gastrointestinal vagal afferent signaling promotes hippocampal-dependent memory function in rats. Neuroscience 2017 Abstracts 510.22 / PP13. Society for Neuroscience, Washington, DC.

Summary: The vagus nerve is the primary conduit of communication between feeding-relevant gastrointestinal (GI) signals and the brain. Vagally-mediated GI satiation signals, including gastric distension and intra-gastric nutrient infusion, activate neurons in the hippocampus (HPC) through unidentified polysynaptic pathways. The functional relevance of GI-derived communication to the HPC is unknown. Here we first explored whether chronic disruption of gut-to-brain vagal tone via subdiaphragmatic vagotomy (SDV) negatively impacts HPC-dependent memory function in rats. While SDV did not impair HPC-dependent appetitive learning based on interoceptive energy status cues or social food-related cues, SDV did impair spatial working memory (Barnes maze) and contextual episodic memory (novel object in context; NOIC), two HPC-dependent tasks that involve processing of visuospatial stimuli. Next, to determine whether vagal sensory/afferent vs. motor/efferent signaling regulates HPC-dependent memory function, we employed a novel approach in which a saporin conjugated to cholecystokinin (CCK-SAP) or an unconjugated control saporin is injected into the nodose ganglia, a strategy that preserves 100% of vagal efferent signaling while eliminating ~80% of GI-derived vagal afferent signaling. Similar to SDV rats, CCK-SAP rats were impaired in both the Barne’s maze task and NOIC learning relative to controls. Consistent with the memory deficits, immunoblot protein analyses in hippocampus lysates revealed reduced neurotophic [brain- derived neurotrophic factor (BDNF)], and neurogenesis [doublecortin (DCX)] markers in both SDV and CCK-SAP rats relative to controls. These findings indicate that GI-derived vagal afferent signaling is critical in regulating HPC-dependent mnemonic function. Results have direct clinical relevance, as procedures that chronically disrupt vagus nerve signaling (e.g., vBloc) have recently been FDA-approved for obesity treatment.

Related Products: CCK-SAP (Cat. #IT-31)

Shopping Cart
Scroll to Top