1. Home
  2. Knowledge Base
  3. References
  4. Sonic hedgehog signalling pathway during regenerative processes in a mouse model of spinal motoneuronal loss

Sonic hedgehog signalling pathway during regenerative processes in a mouse model of spinal motoneuronal loss

Gulisano M, Vicario N, Costantino A, Giunta MAS, Spitale FM, Parenti R, Gulino R (2018) Sonic hedgehog signalling pathway during regenerative processes in a mouse model of spinal motoneuronal loss. Neuroscience 2018 Abstracts 379.29 / L1. Society for Neuroscience, San Diego, CA.

Summary: Background – Neuronal loss represents the consequence of direct or indirect insults to neurons, as well as one of the major factors mediating persistent disability. Gliosis, neuroinflammation and neurodegeneration are processes in which different cell populations have an interplay mediating both hostile microenvironment and self-repairing mechanisms. Sonic hedgehog (Shh) signaling, which has been indicated as an important pathway in central nervous system development and neural stem cells (NSCs) function, may have a role in prompting the repairing and modulating actions of endogenous and/or exogenous NSCs in neurodegenerative conditions. Methodology – Somatic NSCs were obtained from the subventricular zone (SVZ) of 8 week old female 129/Sv mice. We studied the Shh pathway on NSCs both in vitro and in a mouse model of spinal motorneuronal degeneration induced by cholera toxin B conjugated to saporin (CTB-Sap) injection into the gastrocnemius muscle. Results – NSCs were derived, expanded and characterized in vitro. We analyzed the effects of Shh signaling pathway modulation on NSCs in vitro, finding a significant increase of the NSCs growth rate (2.98±0.58 vs. 5.26±0.57, p<0.05) and neurospheres diameters (109.9±2.4μm vs. 129.6±3.7μm, p<0.01) upon Shh pathway activation. We then characterized Shh signaling activation in CTB-Sap mice analyzing neuronal loss, gliosis, inflammation and compensatory self-repairing mechanisms, compared to intact control mice. Conclusions - Our results suggest a crucial role of Shh signaling during regenerative processes and NSCs as a potential strategy to support recovery after spinal motoneuronal degeneration, thus representing a promising approach for neurodegenerative disorders.

Related Products: CTB-SAP (Cat. #IT-14)

Shopping Cart
Scroll to Top