Lim J, Stafford B, Nguyen P, Lien B, Wang C, Zukor K, He Z, Huberman A (2016) Neural activity promotes long-distance, target-specific regeneration of adult retinal axons. Nat Neurosci 19:1073-1084. doi: 10.1038/nn.4340 PMID: 27399843
Summary: Axons in the CNS fail to regenerate after injury. Scientists sought to identify strategies that would allow retinal ganglion cell (RGC) axons to regenerate in the eye-to-brain pathway, and if that was possible, whether the axons could reconnect with their correct targets and restore visual function. It was previously shown that increasing mTOR signaling could trigger RGC axon regeneration. Several conditions were tested, but combining increased mTOR signaling and then exposing mice to high-contrast visual stimulation daily for 3 weeks scientists after optic nerve crush resulted in long distance RGC axon regeneration, re-innervation of the brain and partial recovery of a subset of visual behaviors. A 1:1000 dilution of Anti-Melanopsin (Cat. #AB-N38) was used for the immunohistochemical analysis of retinas, optic nerves and brain tissue.
Related Products: Melanopsin Rabbit Polyclonal (Cat. #AB-N38)