- Home
- Knowledge Base
- sfn2019
sfn2019
Targeted hippocampal GABA neuron ablation produces hippocampal sclerosis, epilepsy, and dissociable effects on the Morris water maze and object-place paired association tasks
Truckenbrod LM, Bumanglag AV, Chun E, Hernandez A, Federico QP, Maurer AP, Sloviter RS, Burke SN (2019) Targeted hippocampal GABA neuron ablation produces hippocampal sclerosis, epilepsy, and dissociable effects on the Morris water maze and object-place paired association tasks. Neuroscience 2019 Abstracts 158.03. Society for Neuroscience, Chicago, IL.
Summary: An epileptogenic role for hippocampal GABAergic dysfunction has recently been reported (Chun et al. 2019). Specifically, selective ablation of hippocampal GABA neurons by Stable Substance P-saporin (SSP-saporin) conjugate caused dorsal hippocampal sclerosis and chronic epilepsy, without involving convulsive status epilepticus or widespread brain injury. The current study assessed cognitive function in chronically epileptic SSP-saporin-treated rats and their vehicle-injected controls ~8 months following injection. First, rats completed the Morris Water Maze test of spatial learning and memory (Morris et al., 1982). Animals then underwent testing with the object-place paired association (OPPA) task, which requires the hippocampus as well as functional connectivity between the hippocampus and cortical areas (Jo and Lee, 2010; Hernandez et al., 2017), and then a simple object discrimination task. Interestingly, both controls and rats with dorsal hippocampal sclerosis and chronic epilepsy were able to learn the location of the hidden platform in the Morris Water Maze task and could also acquire a simple pair-wise object discrimination. However, epileptic rats with dorsal hippocampal sclerosis were significantly impaired on the OPPA task, which requires animals to integrate spatial location memory with a correct object choice and is a more sensitive measure of cognitive dysfunction (Hernandez et al., 2015). These data indicate that, similar to humans with medial temporal lobe epilepsy, selective hippocampal sclerosis and epilepsy in this model do not result in global cognitive decline. Rather, cognitive functions that require functional connectivity between the hippocampus and cortical areas are selectively affected.
Related Products: SSP-SAP (Cat. #IT-11)
ATS Poster of the Year Winner. Read the featured article in Targeting Trends.
See Also:
Sign-trackers deploy perceptual, but not cholinergic-attentional, mechanisms to respond to salient cues
Phillips KB, Avila C, Sarter M (2019) Sign-trackers deploy perceptual, but not cholinergic-attentional, mechanisms to respond to salient cues. Neuroscience 2019 Abstracts 331.10. Society for Neuroscience, Chicago, IL.
Summary: Sign-trackers (STs) attribute incentive value to stimuli that predict food and drug rewards and therefore have emerged as a model for studying vulnerability for addiction-like behaviors. Relative to goal-trackers (GTs), who do not imbue discrete predictive stimuli with motivational value, STs also show a reduced capacity for engaging forebrain cholinergic signaling for the processing of behaviorally significant and attention-demanding cues. The greater power of Pavlovian drug cues in STs has been attributed in part to their relatively poor attentional control of such cues. However, when tested in an operant Sustained Attention Task (SAT), STs exhibit only a minor impairment in hit rates but, more robustly, unstable performance over time. These observations raised the question as to the neuro-behavioral or -cognitive mechanisms via which STs perform the SAT. Male and female STs were trained on SAT. The SAT requires the reporting of cues as well as non-cue events via separate levers, yielding four response categories (hits and misses, and correct rejections and false alarms). After reaching criterion, half of STs received bilateral infusions of the cholino-selective neurotoxin 192-IgG saporin while the remaining STs received sham-lesions. Following recovery, performance was assessed on the SAT and a version of SAT incorporating a flashing house light distractor (dSAT). Goal-directed (or top-down) attention is thought to maintain and recover performance during dSAT and mediated via increases in cortical cholinergic activity. In STs, neither SAT nor dSAT performance depended on the integrity of the cholinergic system. We therefore hypothesized that STs perform the SAT using model-free, non-attentional mechanisms, perhaps relying largely on trial-biased perceptual processes to detect salient cues. To test this hypothesis, separate STs and GTs were trained on SAT. The salience of the cue light relative to the house light was varied across operant chambers. In STs, greater perceptual sensitivity reductions were observed as a function of relatively weaker cue salience. In contrast, GTs’ perceptual sensitivity did not relate to cue salience. Associated with their relatively unresponsive cholinergic system, STs rely on perceptual mechanisms, rather than attentional mechanisms, to perform the SAT. The relative absence of (top-down) attentional control of behaviorally significant cues, combined with a propensity to attribute incentive value to such cues, renders STs less likely to reject such cues from guiding their behavior and engaging in alternative action.
Related Products: 192-IgG-SAP (Cat. #IT-01)
Effect of medial septal selective and non selective lesions on exploratory behavior and recognition memory
Kruashvili L, Beselia G, Chkhikvishvili N (2019) Effect of medial septal selective and non selective lesions on exploratory behavior and recognition memory. Neuroscience 2019 Abstracts 336.01. Society for Neuroscience, Chicago, IL.
Summary: Investigation of cholinergic system and memory interaction has especially become the object of scientific attention due to the clinical and experimental data, in which the severity of dementia in Alzheimer’s disease (AD) was found to have a positive correlation with the extent of the cholinergic loss. The septum is connected to the hippocampus via the fimbria-fomix, which carries projections from the medial septum (MS), and the vertical limb of the diagonal band of Broca. These projections are predominantly cholinergic and GABAergic. Lesions of the fimbria-fomix, or electrolytic lesions of the MS, impair hippocampal- dependent learning and memory. The purpose of this study was to investigate ability to acquire and use spatial (or non-spatial) information as well as to habituate exploratory activity over time in sham-operated, electrolytic, neuro or immunotoxic MS lesioned rats. Methods: A total of 39 male rats were used. For electrolytic lesions a stainless steel was inserted in the MS. All injections were performed stereotaxically. Rats were individually given five 3-min sessions in the open field. All experiments were approved by the Animal Care and Use Committee of the Center and were in accordance with the principles of laboratory animal care. Results: Examination of the AChE stained sections showed that after injections of 192 IgG saporin into the MS, animals exhibited significantly less AChE staining in MS and hippocampus as compared to sections obtained from control animals. The MS electrolytic and ibotenic acid lesioned rats showed an increase in their exploratory activity to the objects and were impaired in habituating to the objects in the repeated spatial environment, rats with immunolesions of the MS did not differ from control rats. Electrolytic lesions of the MS disrupt spatial recognition memory, rats with immuno- or neurotoxic lesions of the MS were normal in detecting spatial novelty. The MS lesioned and control rats clearly reacted to the object novelty by exploring the new object more than familiar ones. Conclusions: MS is sufficient for spatial recognition, but is not sufficient for object recognition memory, the selective loss of septohippocampal cholinergic or noncholinergic projections does not disrupt the function of the hippocampus to a suffi cient extent to impair spatial recognition memory. Therefore, the present study demonstrates dissociation between the two major components (cholinergic and noncholinergic) of the septohippocampal pathway in exploratory behavior assessed in the open field.
Related Products: 192-IgG-SAP (Cat. #IT-01)
How to stimulate: Basal forebrain DBS parameters to restore the attentional performance of rats with cholinergic losses
Nazmuddin M, Rao HA, Van Laar T, Sarter MF (2019) How to stimulate: Basal forebrain DBS parameters to restore the attentional performance of rats with cholinergic losses. Neuroscience 2019 Abstracts 377.10. Society for Neuroscience, Chicago, IL.
Summary: The degeneration of basal forebrain (BF) cholinergic neurons is an index of the severity of cognitive impairment in Alzheimer disease (AD) and Parkinson’s disease (PD). Moreover, in PD patients, gait and balancing deficits, and an increased propensity for falls have been attributed to cholinergic losses. Thus, Deep Brain Stimulation (DBS) of the BF has been considered a potential therapeutic intervention to improve cognition and movement control in these patients. However, efficacy of BF DBS in clinical populations has yet to be conclusively demonstrated. Likewise, the demonstration of beneficial effects of BF DBS in rodent models has been hampered by uncertainties about useful animal models and behavioral tasks and, importantly, a lack of consensus concerning DBS parameters (duration, frequency, current, intermittent versus continuous, prior and/or during task, etc.). Here we assessed various DBS parameters in rats with a partial loss of the cortical cholinergic input system. In rats, such cholinergic losses have been frequently demonstrated to impair the detection of cues during the performance of a Sustained Attention Task (SAT) and to attenuate performance recovery following a distractor challenge (dSAT). In PD patients with cholinergic losses, attentional impairments were also attributed to cortical and thalamic cholinergic losses (Kim et al., 2017). The attribution of SAT impairments to cholinergic losses is consistent with evidence showing that the detection of cues and associated attentional control parameters depend on cortical cholinergic signaling (e.g., Howe et al., 2017). Here, rats acquired the SAT, received infusions of the cholino-specific neurotoxin 192-IgG-saporin into the BF, and were implanted bilaterally with BF unipolar stimulation electrodes. Initial DBS parameters consisted of continuous high (130 Hz) versus low (20 Hz) frequency stimulation, intermittent (20-s ON at 80 Hz and 40-s OFF) stimulation, with pulse width and amplitude kept constant at 100 µs and 100 µA, respectively. We first assessed the effects of these DBS parameters on the behavior of rats in an open field space and then when administered during, or only prior to (for 1 hr), SAT and dSAT performance. Ongoing experiments indicate that these stimulation parameters are well tolerated as indicated by the absence of effects on locomotor and exploratory activity. We predict that BF DBS will be particularly effective in restoring attentional performance in the dSAT condition. If confirmed, this finding will suggest that demonstration of efficacy in patients will require measures indicating their attentional capacities in response to taxing performance challenges.
Related Products: 192-IgG-SAP (Cat. #IT-01)
Effects of an orexin-2 receptor agonist on attention in rats following loss of cortical cholinergic projections
Blumenthal SA, Maness EBL, Fadel JR, Burk JA (2019) Effects of an orexin-2 receptor agonist on attention in rats following loss of cortical cholinergic projections. Neuroscience 2019 Abstracts 418.06. Society for Neuroscience, Chicago, IL.
Summary: Deterioration to the basal forebrain cholinergic system (BFCS) is linked to age-related cognitive impairment, specifically to the pathology of Alzheimer’s disease (AD). Animals with BFCS damage perform poorly on learning, memory, and attention tasks, indicating cognitive deficits. The orexin neuropeptide system, comprised of two neuropeptides (orexin A and orexin B), has also been implicated in the cognitive decline associated with aging, likely due to the role of orexins in promoting attention. Two orexin receptor subtypes exist, orexin 1 (Ox1R) and orexin 2 (Ox2R). Studies have examined the effects of stimulation and blockage of both receptors together and Ox1R alone on attention; but no studies have examined the role of Ox2Rs in attention through the use of Ox2R agonists. Ox2Rs may be implicated in attentional processes and the loss of orexin neurons seen in age-related cognitive decline. In order to examine the role of Ox2Rs in attention following BFCS deterioration, the present study administered the Ox2R agonist, YNT-185, to rats given intrabasalis infusions of either saline (n = 12) or 192 IgG saporin (n=11), an immunotoxin which selectively destroys the BFCS. Animals received infusions of YNT-185 to the lateral ventricle (LV) in doses of 0, 1, 10, and 100nM across four separate sessions and performance was then assessed on a sustained attention task requiring discrimination between signal and non-signal trials through lever presses. The 100nM dose of YNT-185 improved attentional performance, as compared to the 0nM dose, for rats given the immunotoxin, but worsened performance for rats given saline lesions. YNT-185 may be efficacious in aiding attentional function in animals with vulnerable cholinergic systems but may lead to overexcitation for those with intact cholinergic function.
Related Products: 192-IgG-SAP (Cat. #IT-01)
Dissociable attentional effects of dopaminergic and cholinergic lesions to the anterior cingulate cortex
Clement MK, Pimentel CS, Swaine JA, Pimentel AJ, Hutchins D, McGaughy JA (2019) Dissociable attentional effects of dopaminergic and cholinergic lesions to the anterior cingulate cortex. Neuroscience 2019 Abstracts 418.11. Society for Neuroscience, Chicago, IL.
Summary: Prior work from our lab has shown that excitotoxic lesions to the anterior cingulate cortex (ACC) impairs the ability of rats to filter certain types of distracting stimuli (Newman and McGaughy 2011). Specifically, rats with lesions of the ACC cannot filter distractors that have been made salient through pairing with reinforcement. In contrast, these same subjects can filter distracting stimuli that have not been predictive of reward. The present study investigates the effects of neuromodulator specific lesions of the same region to determine how specific neuromodulators contribute to the attentional function of ACC. Cholinergic or dopaminergic deafferentation of the ACC was achieved using either 192 IgG saporin (n=10) or dopamine transporter saporin (n=10). Lesions were restricted to the rostral portion of the area and did not spread to nearby prefrontal sub-regions e.g prelimbic cortex. After lesioning, subjects were tested in an attentional set-shifting task (Birrell and Brown 2000). While both cholinergic and dopaminergic lesions increased distractibility, these deficits were not as severe as those produced after excitotoxic lesions (n= 8). In contrast to excitotoxic lesions, both cholinergic and dopaminergic lesions also impeded formation of an attentional set. Because dopaminergic lesions produced impairments in many stages of the tasks, we hypothesized that these subjects had a more general impairment in stimulus processing. In order to address these broader processing impairments, we analyzed the data to determine whether lesioned rats showed more sensitivity to novel stimuli, or made more perseverative errors. The implications of these data for understanding the unique contributions of acetylcholine and dopamine to attentional processing in the ACC will be discussed.
Related Products: 192-IgG-SAP (Cat. #IT-01), Anti-DAT-SAP (Cat. #IT-25)
SUVN-G3031, histamine H3 receptor inverse agonist preclinical evaluation for the treatment of excessive daytime sleepiness in narcolepsy
Bhyrapuneni G, Benade V, Daripelli S, Kamuju V, Shinde A, Abraham R, Nirogi R, Jasti V (2019) SUVN-G3031, histamine H3 receptor inverse agonist preclinical evaluation for the treatment of excessive daytime sleepiness in narcolepsy. Neuroscience 2019 Abstracts 502.07. Society for Neuroscience, Chicago, IL.
Summary: Numerous studies have demonstrated that brain histamine plays a crucial role in maintenance of wakefulness, attention, learning and other cognitive processes. SUVN-G3031, a potent histamine H3 receptor inverse agonist is being developed for the treatment of narcolepsy and other sleep related disorders. SUVN-G3031 is one of the lead molecules with hKi of 8.7 nM and has more than 100 fold selectivity against the related GPCRs. SUVN-G3031 exhibited desired pharmacokinetic properties and brain penetration. SUVN-G3031 blocked R-α-methylhistamine induced water intake and increased tele-methylhistamine levels in brain and cerebrospinal fluid. In the present study, SUVN-G3031 was evaluated in brain microdialysis and rodent models of electroencephalography (EEG). SUVN-G3031 was evaluated in brain microdialysis for evaluation of neurotransmitters like acetylcholine, histamine, dopamine and norepinephrine in male Wistar rats. EEG was used to evaluate the effects on sleep/ wake profile in rats and mice.A single oral administration of SUVN-G3031 produced significant increase in acetylcholine, histamine, dopamine and norepinephrine levels in the cortex. SUVN-G3031 produced no change in the dopamine levels of striatum and nucleus accumbens indicating that SUVN-G3031 may not have addiction liabilities. Narcoleptic-like sleep behavior was observed in rats injected with hypocretin-2-saporin in lateral hypothalamus. SUVN-G3031 produced significant increase in wakefulness with concomitant decrease in rapid eye movement (REM) sleep in these animals. These results are in agreement with EEG studies carried out in healthy male Wistar rats. Results from current studies provide strong evidence for the potential of SUVN-G3031 in the treatment of excessive daytime sleepiness associated with narcolepsy. First in human, Phase 1 studies for SUVN-G3031 are completed under US IND and SUVN-G3031 has shown desirable pharmacokinetic profile with safety and tolerability in healthy human volunteers. Phase 2 study for the treatment of excessive daytime sleepiness associated with narcolepsy is currently ongoing in USA.
Related Products: Orexin-B-SAP (Cat. #IT-20)
Role of nociceptive afferent input on forelimb reaching and grasping behaviors in the spinal cord injured rat
Walker JR, Ong A, Detloff MR (2019) Role of nociceptive afferent input on forelimb reaching and grasping behaviors in the spinal cord injured rat. Neuroscience 2019 Abstracts 572.09. Society for Neuroscience, Chicago, IL.
Summary: Individuals with spinal cord injury (SCI) suffer a loss of motor and sensory function. The current standard of care to recover fine motor control is rehabilitation focused on a combination of range of motion, aerobic, and strength training (ST). However, limited research has been conducted to determine the role of nociceptive afferent inputs from muscle on spinal plasticity and/or recovery of function. Using a rodent model of SCI strength training rehabilitation, we determined that motor training not only improves forelimb strength and fine motor function but also can modulate the development of neuropathic pain, suggesting that improvements in reaching and grasping may be due, in part, to plasticity of nociceptive afferents. To further explore this, Sprague-Dawley rats received injections of rIB4-conjugated saporin, mu p75-conjugated saporin or unconjugated (vehicle) into the cervical dorsal root ganglia unilaterally to eliminate non-peptidergic and peptidergic nociceptors. There is an uninjured cohort and a group with unilateral C5 SCI. Von Frey and Hargreaves’ tests were performed at baseline and several time points post-injection to assess the effcacy of the nociceptive elimination. Several measures of forelimb strength were recorded over time including the isometric pull task, a single pellet retrieval task and the Montoya staircase test. To confirm the depletion of peptidergic and non-peptidergic nociceptors following saporin injection and/or SCI, cervical DRGs and spinal cords were stained with antibodies against CGRP and isolectin-B4. An understanding of the role of nociceptors in spinal plasticity and functional motor and sensory recovery of SCI patients will guide future research and refine rehabilitation strategies to further improve their quality of life.
Related Products: IB4-SAP (Cat. #IT-10), mu p75-SAP (Cat. #IT-16)