- Home
- Knowledge Base
- sfn2012
sfn2012
The effects of basal forebrain cholinergic neuron of recognition tests.
Lee J, Jeong D, Chang J (2012) The effects of basal forebrain cholinergic neuron of recognition tests. Neuroscience 2012 Abstracts 345.10. Society for Neuroscience, New Orleans, LA.
Summary: The cholinergic neurons of the Medial septum and the basal nucleus areas of the basal forebrain project to the frontal cortex and the Hippocampus, and degeneration of the cholinergic basal forebrain neuron is a common feature of Alzheimer’s disease(AD) and vascular dementia and it has been correlated with cognitive decline. This research studied to verify the effects of cholinergic neuron in basal forebrain and the role of hippocampus and frontal cortex on recognition through recognition test and immunohistochemistry after damaging cholinergic neuron of the basal forebrain by intraventricular injection of 192 IgG-saporin. 192 IgG-saporin of 8ul (0.63ug/ul) was injected to the bilateral lateral ventricle of rats. After 2 weeks, Novel object recognition (NOR) test and Object in place (OIP) test was conducted to elucidate damage of cholinergic neuron. After completing the behavioral test, the ChAT cholinergic neuron in the brain was ascertained to confirm with immunohistochemistry if cholinergic neuron was damaged. In NOR test, the lesion group with 192 IgG-saporin showed 10% lower novel object preference than normal group. In OIP test, the normal group showed 50% novel object preference and the lesion group with 192 IgG-saporin showed 30% novel object preference in an hour delay test. On the other hand, the normal group and the lesion group with 192 IgG-saporin shoed 33% and 35% novel object preference respectively in a day delay test. However, this rate is not that significant value enough to elucidate behavioral difference between normal group and lesion group. In immunohistochemistry, the number of cholinergic neuron was remarkably decreased in basal forebrain. According to both of the behavioral tests, lesion group seem to less remember novel object than normal group. Also, they searched less the novel object that changed its location than normal group in the short term condition. However, there was no significant difference in the long term condition. These results suggest that the lesion with 192 IgG-saporin can damage spatial working memory.In the Immunohistochemistry result of the lesion condition, cholinergic input to hippocampus in basal forebrain affects recognition. However, the effect is not so essential.
Related Products: 192-IgG-SAP (Cat. #IT-01)
Effects of chronic stress on alterations of GR-PKA-NF-kappa B signaling and spatial learning in rats with cholinergic deafferentation.
Lee S-Y, Ma J, Chung C, Han J-S (2012) Effects of chronic stress on alterations of GR-PKA-NF-kappa B signaling and spatial learning in rats with cholinergic deafferentation. Neuroscience 2012 Abstracts 345.20. Society for Neuroscience, New Orleans, LA.
Summary: Aging and Alzheimer’s disease (AD) is associated with diminished integrity of the cholinergic innervations of the hippocampus and cortex. Previously, we demonstrated that removal of the cholinergic innervations impaired regulation of the HPA axis with response to acute stress and induced changes in the interaction among glucocorticoid receptor (GR), nuclear factor-κB (NF- κB) p65, and the cytoplasmic catalytic subunit of protein kinase A (PKAc) in the hippocampus. The current research examined effects of chronic stress on the altered signaling induced by cholinergic deafferentation. Young adult rats received immunotoxic lesions of basal forebrain cholinergic neurons by intracranial injections of 192 IgG-saporin into the medial septum/vertical limb of the diagonal band and substantia innominata/nucleus basalis. After 2 weeks recovery from surgery, rats with cholinergic lesions and vehicle-injected control rats were subjected to 1 hr restraint stress per day for 2 weeks. Rats with only cholinergic deafferentation or sham-operated rats with chronic stress showed intact spatial learning. Rats with cholinergic deafferentation that received chronic stress showed impairments of spatial learning. And we examined that cholinergic deafferentation induced alterations in GR and NF- κB p65 expression in hippocampus and prefrontal cortex. Thus the loss of cholinergic integrity during aging and in AD may increase proneness to chronic stress.
Related Products: 192-IgG-SAP (Cat. #IT-01)
Poster: Evaluating the role of neuronal nitric oxide synthase-containing striatal interneurons in methamphetamine-induced dopamine neurotoxicity.
Fricks-Gleason AN, Keefe KA (2012) Poster: Evaluating the role of neuronal nitric oxide synthase-containing striatal interneurons in methamphetamine-induced dopamine neurotoxicity. Neuroscience 2012 Abstracts 360.06. Society for Neuroscience, New Orleans, LA.
Summary: It is well established that exposure to multiple high doses of methamphetamine (METH) produces damage to central monoamine systems. A number of factors, including the production of nitric oxide (NO), have been implicated in this neurotoxicity. While it is relatively clear that NO contributes to METH-induced neurotoxicity to the dopamine (DA) nerve terminal, the source of this NO has not been clearly delineated. There is considerable evidence suggesting that the generation of NO arises a consequence of the activation of neuronal nitric oxide synthase (nNOS). In striatum, nNOS is located post-synaptic to the DA nerve terminal in a subpopulation of striatal interneurons. Thus, we have hypothesized that DA-mediated activation of the nNOS-containing striatal interneurons is necessary for METH-induced neurotoxicity. These interneurons, along with the cholinergic neurons of striatum, selectively express the neurokinin-1 (NK-1) receptor, which is activated by the neuropeptide Substance P. Consequently, toxins targeted to NK-1 receptor-containing neurons can be used to lesion this population of striatal interneurons. One such toxin, a conjugate of Substance P to the ribosome inactivating protein saporin (SSP-SAP), has been shown to be effective in selectively destroying neurons expressing the NK-1 receptor in striatum. Therefore, using targeted deletion of the nNOS-containing interneurons via SSP-SAP, we examined the extent to which impairing post-synaptic production of NO attenuates METH-induced neurotoxicity. The SSP-SAP lesions resulted in a significant and selective loss of nNOS-containing interneurons throughout the striatum, although it was not possible to completely eliminate all of the neurons. Surprisingly, however, this marked deletion of nNOS-containing interneurons did not confer resistance to METH-induced DA neurotoxicity, even in areas completely devoid of nNOS-positive cell bodies and histochemical detection of NOS activity with NADPH diaphorase histochemical staining. Furthermore, these lesions did not attenuate NO production, as assessed via nitrotyrosine immunohistochemistry, even in areas devoid of nNOS. Taken together, these data suggest that nNOS-containing interneurons either are not necessary for METH-induced DA neurotoxicity, leaving open the potential contribution of other sources of NO, such as endothelial NOS (eNOS), or produce NO/RNS that can diffuse extensively through striatal tissue and thereby still mediate the neurotoxicity.
Related Products: SSP-SAP (Cat. #IT-11)
Knockdown of noradrenergic locus coeruleus (LC) neurons alleviates chronic orofacial pain
Kaushal R, Ma F, Zhang L, Bright CR, Taylor BK, Westlund KN (2012) Knockdown of noradrenergic locus coeruleus (LC) neurons alleviates chronic orofacial pain. Neuroscience 2012 Abstracts 164.19. Society for Neuroscience, New Orleans, LA.
Summary: Trigeminal neuralgia (TN) is an excruciating and debilitating form of clinical orofacial pain. Noradrenergic locus coeruleus (LC, pontine A6 neurons) is involved in bidirectional modulation of pain. Multiple studies indicate that LC activity is increased during noxious stimulation and following inflammation or nerve damage. Predominantly known for its role in the feedback inhibition of pain, emerging studies also indicate a contribution of the LC in pain facilitation. For example, lesions of the LC significantly reduce tonic behavioral responses to intraplantar formalin injection, prevent autotomy, and reduce hypersensitivity associated with peripheral nerve injury. In this study we hypothesized that noradrenergic (LC) neurons contribute to the facilitation of chronic pain in TN. We used a rat model of TN involving infraorbital nerve chronic constriction injury (ION-CCI) which produces mechanical hypersensitivity as assessed by a reduction in von Frey threshold. Administration of anti-dopamine-β-hydroxylase saporin (anti-DβH-saporin) toxin was performed for selective elimination of noradrenergic LC neurons or IgG saporin (nonspecific) as the control either by intracerebroventricular (i.c.v space 2) or by bilateral spinal trigeminal nucleus (STN) injections. Under minimal restraint, rats received either no stimulation or repeated stimulation with either a 2 or 15-gm von Frey hair applied directly to the maxillary branch. Withdrawal threshold (tactile allodynia) from von Frey fiber stimulation to the face was not changed as compared to baseline in animals subjected to sham surgery; this was true in both saporin and anti-DβH-saporin groups. However, i.c.v. anti-DβH-saporin significantly increased withdrawal threshold animals with ION-CCI as compared to IgG saporin controls. More selective destruction of the LC-trigeminal pathway with bilateral STN anti-DβH-saporin injection also alleviated behavioral signs of chronic orofacial hyperalgesia. Elimination of noradrenergic LC neurons was confirmed by complete loss of tyrosine hydroxylase (TH) immunoreactivity in anti-DβH-saporin injected animals. Compared to unstimulated controls, mechanical stimulation increased immunoreactive phosphorylated extracellular cell-regulated protein kinase (pERK), a marker of neuronal activity, in the LC and STN. Nerve injury also increased expression of a neuronal injury and stress marker, activating transcription factor 3 (ATF3), in trigeminal ganglia neurons. Together, these results indicate that noradrenergic locus coeruleus neurons facilitate chronic orofacial neuropathic pain.
Related Products: Anti-DBH-SAP (Cat. #IT-03)
Combined loss of entorhinal and basal forebrain cholinergic hippocampal inputs deeply impairs spatial navigation memory in C57BL/6J and hAPPxapoE mice.
Mathis C, Moreau P-H, Zerbinatti C, Goutagny R, Cosquer B, Geiger K, Kelche C, Cassel J-C (2012) Combined loss of entorhinal and basal forebrain cholinergic hippocampal inputs deeply impairs spatial navigation memory in C57BL/6J and hAPPxapoE mice. Neuroscience 2012 Abstracts 203.28. Society for Neuroscience, New Orleans, LA.
Summary: The hippocampus plays a key role in spatial learning and memory. Major inputs provided by the cholinergic basal forebrain (CBF) and the entorhinal cortex (EC) neurons are expected to modulate hippocampal functions. Surprisingly, the selective lesion of one or the other produces only moderate performance degradation in spatial navigation tasks, suggesting possible compensation provided by other hippocampal inputs. We therefore assessed the effects of single versus combined lesions of the EC (NMDA excitotoxin) and the CBF (mu-p75 saporin immunotoxin) on several forms of memory in C57BL/6 mice. Single lesions had moderate or no effects, while the combined lesions completely abolished long-term spatial memory retention in the water-maze and the Barnes-maze navigation tasks. Object recognition memory was selectively and profoundly affected by the loss of cholinergic neurons, whereas object location memory was only marginally affected by the lesions. These results suggest that the integrity of both the CBF and the EC is critical to establish an enduring spatial navigation memory. The synergistic interaction between the two lesions is particularly relevant to Alzheimer’s disease (AD) since both structures undergo severe degeneration in parallel to dramatic impairments in spatial navigation tasks. The apolipoprotein E4 (apoE4) allele, a major genetic risk factor for AD, has been proposed as a cholinergic deficit predictor and has been associated with larger EC atrophy in AD patients. Thus, the effects of single and combined EC and CBF lesions were evaluated on Barnes maze navigation performance in hAPPxapoE mice knocked-in for the human apoE3 or apoE4 gene allele on a (normal) human APP YAC transgenic background. Long-term spatial memory performances of hAPPxapoE3 and hAPPxapoE4 mice were dramatically affected by the CBF lesion and the combined lesions, but not by the EC lesion. A similar pattern of deficit was observed on learning performances in apoE4 not in apoE3 mice; the latter were only affected by the combined lesions. In conclusion, the apoE4 genotype had no effect on the consequences of EC and combined lesions, but it worsened the outcome of CBF lesions compared to the apoE3 genotype. Since the mice of the two genotypes showed similar loss of cholinergic neurons, our data may reflect a deleterious impact of apoE4 on the activity of the few surviving neurons (about 20%). Alternatively, our findings would also be consistent with impaired compensatory mechanisms following cholinergic loss which could depend on other hippocampal inputs such as the entorhinal cortex. Further analyses are underway to clarify this issue.
Related Products: mu p75-SAP (Cat. #IT-16)
Neurotoxic lesion of CRF-R1 neurons in the amygdala selectively attenuates the heart rate response to acute stress in the spontaneously hypertensive rat.
Hayward LF (2012) Neurotoxic lesion of CRF-R1 neurons in the amygdala selectively attenuates the heart rate response to acute stress in the spontaneously hypertensive rat. Neuroscience 2012 Abstracts 281.28. Society for Neuroscience, New Orleans, LA.
Summary: The magnitude of a person’s autonomic response to mental stress is predictive of one’s risk for the development of cardiovascular disease and has been linked to indicators of exaggerated neuronal activity in the amygdala. Recent evidence from our lab identified a link between changes in the expression of the neuropeptide corticotrophin-releasing factor (CRF) within the central nucleus of the amygdala (CEA) to exaggerated cardiovascular responses to acute stress in the spontaneously hypertensive rat (SHR). The present study was undertaken to evaluate the impact of selective lesion of CRF-R1 neurons in the amygdala on the cardiovascular response to acute air jet stress (AJS) in the SHR. Male SHR rats underwent local bilateral microinjections of 10 nanograms/200 nl per side of blank-saporin (n=4) or CRF-receptor (R1) targeting saporin (n=4) into the region of the CEA. Following 7-10 days of recovery and two days following arterial catheter instrumentation, animals underwent AJS testing. CRH-R1 lesion in the amygdala produced a small reduction in resting systolic blood pressure (160±6 vs 173±4 mmHg, p<0.1) but not change in heart rate (354±16 vs 352±+4 bpm). CRH-R1 lesion also significantly attenuated the mean rise heart rate in response to AJS (72±21 vs 130±13 bpm) and facilitated a more rapid heart rate recovery independent of any effect on the blood pressure response to AJS. The findings demonstrate for the first time that CRF-R1 activation in the amygdala selectively contributes to the elevated heart rate response to stress in individuals with hypertension, thus providing a link between the exaggerated activity in the amygdala and a specific cardiovascular response to stress.
Related Products: CRF-SAP (Cat. #IT-13)
IB4 (+) neurons contribute to force-induced cancer pain but not cancer proliferation
Ye Y, Viet CT, Dang D, Schmidt BL (2012) IB4 (+) neurons contribute to force-induced cancer pain but not cancer proliferation. Neuroscience 2012 Abstracts 67.10. Society for Neuroscience, New Orleans, LA.
Summary: The primary treatment for cancer pain is μ-opiates; however, often μ-opiates are not effective and they produce multiple debilitating side effects. Recent studies show that μ- and δ-opioid receptors are separately expressed on IB4 (-) and IB4 (+) neurons, which mediate thermal and mechanical pain, respectively. We investigated the contribution of IB4 (+) and IB4 (-) neurons to cancer-induced mechanical and thermal hypersensitivity and investigated the role of these fibers to cancer proliferation. We used two separate mouse cancer pain models: 1) a cancer supernatant injection model, and 2) an orthotopic cancer model. The former model isolated the effect of the cancer secretome while the latter examined the effect of the following constituents within the cancer microenvironment: the cancer, the cancer secretome and the host tissue. Using the cancer supernatant model, along with injection of a selective δ-opioid receptor agonist and a P2X3 antagonist to target IB4 (+) neurons, we showed that IB4 (+) neurons played arole in cancer-supernatant-induced mechanical allodynia, but not thermal hyperalgesia. Selective ablation of IB4 (+) neurons in the spinal cord using IB4-saporin affected cancer-supernatant-induced mechanical but not thermal hypersensitivity. In the orthotopic cancer model, mice with paw cancer exhibited both mechanical and thermal hypersensitivity. Selective ablation of IB4(+) neurons decreased mechanical hypersensitivity; however thermal hypersensitivity was increased. We hypothesized that increased thermal hyperalgesia was associated with a compensatory elevation of TRPV1 expression in the spinal cord. Thermal latency in the mouse cancer paw was increased by intrathecal TRPV1 antagonist and selective removal of TRPV1 terminals by capsaicin in the IB4-saporin treated mice compared to saporin treated mice. Mechanical threshold was not affected by either the TRPV1 antagonist or capsaicin treatment. In the spinal cord, TRPV1 protein levels were increased in cancer mice compared to naïve mice, and TRPV1 was likely to be increased in the IB4-saporin treated cancer mice compared to saporin treated cancer mice. We investigated cancer proliferation by measuring tumor volume. Tumor volume was not affected by selective ablation of IB4 (+) neurons. Our findings suggest that peripherally administered pharmacological agents targeting IB4 (+) neurons, such as a selective δ-opioid receptor agonist or P2X3 antagonist, might be effective for treating cancer pain in patients. Acknowledgements: Supported by NIH/NIDCR R21 DE018561
Related Products: IB4-SAP (Cat. #IT-10)
Catecholaminergic neurons in the ventrolateral medulla are differentially activated by the rate of fall in blood glucose during hypoglycemia, and are required for the rate-dependent hypoglycemic activation of sympathoadrenal responses.
Jokiaho A, Donovan C, Watts A (2012) Catecholaminergic neurons in the ventrolateral medulla are differentially activated by the rate of fall in blood glucose during hypoglycemia, and are required for the rate-dependent hypoglycemic activation of sympathoadrenal responses. Neuroscience 2012 Abstracts 93.05. Society for Neuroscience, New Orleans, LA.
Summary: Hypoglycemic counterregulation is mediated by glucosensors located in the hypothalamus, hindbrain, and portal-mesenteric veins (PV). We have previously shown that when hypoglycemia develops slowly PV glucose sensing is critical for both the sympathoadrenal response and hindbrain Fos activation. Hindbrain catecholaminergic (CA) neurons provide extensive inputs to the hypothalamus and are key participants in the control of energy homeostasis and in the responses to glycemic challenges. However, the role of the various CA cell groups together with the organization of the circuitry between peripheral and central glucose sensing units and the effectors that mediate counterregulatory response to hypoglycemia are unknown. To investigate the role of CA neurons in this network we use hyperinsulinemic-hypoglycemic clamps to induce fast (20mins)- or slow (75min)-onset hypoglycemia in male Wistar rats with saporin/anti-dopamine β-hydroxylase (DBH) DSAP immunotoxin lesions. The hypothalamic paraventricular nucleus (PVH) was injected bilaterally with DSAP or saporin conjugated to mouse IgG (SAP) as controls. PVH DSAP lesions remove about 80% of the DBH-ir and PNMT-ir cell bodies in the ventrolateral medulla. We found that hypothalamic CA afferents are required for sympathoadrenal (epinephrine and nor-epinephrine) responses to slow- but not fast-onset hypoglycemia. We also found robust Fos activation in CA neurons in the ventrolateral (A1, C1) and the dorsomedial medulla, particularly in the nucleus of the solitary tract (NTS; A2, C2). In rats with intact forebrain CA innervations, fast-onset hypoglycemia led to significantly greater DBH/Fos colocalization in the A1, A1/C1 and C1 regions compared to slow-onset hypoglycemia. We further identified substantial numbers of Fos-positive nuclei colocalized in adrenergic neurons (phenylethanolamine-N-methyltransferase (PNMT)) in the A1/C1 and C1 regions, and again these numbers were greater in fast-onset compared to slow-onset hypoglycemia. In SAP and DSAP animals, slow- and fast -onset hypoglycemia led to robust Fos expression in the area postrema and medial parts of the NTS. However, in these two regions there was virtually no Fos and DBH/PNMT-ir colocalization showing that AP and NTS neurons activated following hypoglycemia are not CA. The mechanisms that process the sensory information responsible for sympathoadrenal counterregulatory responses to fast- and slow-onset hypoglycemia are clearly different. We now show that different rates of hypoglycemia onset engage distinct CA cell groups, which in turn differentially participate in rate-dependent counterregulatory responses.
Related Products: Anti-DBH-SAP (Cat. #IT-03)
Lateral and fourth ventricular phloridzin injections stimulate feeding but do not produce hyperglycemia.
Li A-J, Wang Q, Smith BR, Ritter S (2012) Lateral and fourth ventricular phloridzin injections stimulate feeding but do not produce hyperglycemia. Neuroscience 2012 Abstracts 93.18. Society for Neuroscience, New Orleans, LA.
Summary: Sodium-coupled glucose transporters (SGLTs) are a family of glucose transporter found in small intestine, kidney, brain capillaries and some neurons. Because SGLTs are membrane receptors, they interact with extracellular glucose in a metabolism-independent manner. Early work using the SGLT inhibitor, phlorizin, suggested that fourth ventricular phlorizin injection increased feeding, but not blood glucose (Flynn FW and Grill HJ, 1985). To further examine this finding, we injected phloridzin, a competitive inhibitor for SGLT-1 and SGLT-2 into the lateral ventricle (LV) or the 4th ventricle (4V) in rats, and the effects of the injections on food intake and blood glucose were examined. We found that both LV and 4V injections of phloridzin enhanced food intake in rats and that LV and 4V injections were of similar potency. In contrast, neither injection elevated blood glucose levels in the present experiments. We also found that enhancement of feeding by 4V phloridzin was abolished by medial hypothalamic injections of anti-dopamine beta hydroxylase saporin, a retrogradely transported catecholamine immunotoxin that selectively lesions norepinephrine and epinephrine neurons that innervate the injection site. Taken together, these results suggest that SGLT receptors in the brain constitute a novel, nonmetabolic, glucose sensing mechanism that contribute to control of food intake.
Related Products: Anti-DBH-SAP (Cat. #IT-03)