- Home
- Knowledge Base
- sfn2009
sfn2009
Immunolesions of medial septal GABAergic neurons
Jaime S, Perez Cordova MG, Hernandez S, Colom L (2009) Immunolesions of medial septal GABAergic neurons. Neuroscience 2009 Abstracts 241.8/I15. Society for Neuroscience, Chicago, IL.
Summary: Epilepsy is a neurodegenerative condition characterized by spontaneous recurrent seizures that are triggered by excessive electrical activity due to changes in neurological functions. One of the most common forms of epilepsy is Temporal Lobe Epilepsy (TLE) in which seizures originate in limbic structures as hippocampal and/or para-hippocampal areas. Principal cell (i.e. pyramidal cells) activity is indirectly regulated by rhythmic inputs from GABAergic neurons in the septal region of the basal forebrain which selectively innervate inhibitory hippocampal interneurons. In previous studies, using the pilocarpine model of TLE, we have demonstrated that the septum plays an antiepileptic role and that medial septum GABAergic neurons degenerate in the epilepsy process. Thus, damage of medial septum GABAergic neurons may contribute to epileptogenesis. The purpose of this study is to investigate the role of medial septum GABAergic neurons in excitability control and epileptic activity generation. For this purpose, anti-GAT1-SAP (3µL at 325ng/µL) was stereotaxically injected in the medial septum of Sprague Dawley male rats to selectively destroy this neuronal population and investigate the subsequent functional changes. Analysis was performed using stereological approaches which revealed a significant reduction in cell count between treated (anti-GAT1-SAP) and saline-injected control rats (8591.38±941.65 and 25609.87±407.73 respectively; (Student’s t-test; p<0.05). In conclusion, our preliminary results show that the single injections of anti-GAT1-SAP selectively lesions most of the medial septum GABAergic neurons, providing a powerful tool to study the role of these neurons in the control of hyperexcitability states. Studies underway involve the investigation of the functional alterations produced by the selective destruction of MS GABAergic neurons.
Related Products: GAT1-SAP (Cat. #IT-32)
CCK receptor- expressing dorsal horn neurons: Role in pain and morphine analgesia.
Datta S, Chatterjee K, Kline IV RH, Wiley RG (2009) CCK receptor- expressing dorsal horn neurons: Role in pain and morphine analgesia. Neuroscience 2009 Abstracts 265.13/Z37. Society for Neuroscience, Chicago, IL.
Summary: Spinal intrathecal cholecystokinin (CCK) has anti-opiate activity, and the CCK antagonist, proglumide potentiates opiate analgesia. In the present study, we sought to determine the effects of selectively destroying CCK receptor-expressing lumbar dorsal horn neurons using the targeted cytotoxin, CCK-saporin on reflex and operant nocifensive responses to heat, and on the actions of systemic morphine and naloxone. Exp. 1: Adult, female rats were injected into the lumbar CSF with either 1500 ng of CCK-sap (n=7) or blank (control nonsense peptide)-saporin (n=6). Exp. 2: rats were pre-injected intrathecally with 1 ug of proglumide (CCK antagonist) followed by 1500 ng CCK-sap (n=4) or only CCK-sap (1500 ng; n=4). Rats were then tested on the hotplate at 44°C and 47°C and on an operant thermal preference task (TPT) using a shuttle box where the floor on one side was 15°C and the other 45°C. Morphine was tested in the TPT using 0, 0.5, 1.5 and 2.5 mg/kg s.c. 4-8 weeks post-toxin. Naloxone (0 vs 0.8 mg/kg s.c) was also tested in the TPT. In Exp. 1, the CCK- sap group showed decreased hotplate reflex responses, but decreased time on the 45°C side in the TPT. In Exp. 2, CCK-sap only rats also showed greater heat aversion in the TPT. In both Exps, CCK-sap groups demonstrated greater heat aversion (less analgesia) than either control group after morphine in the TPT. After naloxone, both control groups, but not the CCK-sap rats, showed increased heat aversion (hyperalgesia). We interpret these results as showing that selective destruction of CCK receptor- expressing superficial dorsal horn neurons increases nocifensive reflex responses to aversive heat and produces thermal hyperalgesia while decreasing the effects of both morphine and naloxone suggesting a complex role for CCK receptor-expressing dorsal horn neurons in modulation of nociception and opiate drug action.
Related Products: CCK-SAP (Cat. #IT-31)
The role of microglia and neuropeptides in regulating hippocampal neurogenesis.
Sivasathiaseelan H, Nunan R, Zaben M, Shtaya A, Gray WP (2009) The role of microglia and neuropeptides in regulating hippocampal neurogenesis. Neuroscience 2009 Abstracts 31.26/B52. Society for Neuroscience, Chicago, IL.
Summary: Adult mammalian neurogenesis is evident in the hippocampal dentate gyrus where it plays a role in learning and memory and is implicated in the pathophysiology of several brain disorders. Microglia, the innate immune cells of the brain, have recently emerged as an important component of the neurogenic niche, however their role in the regulation of neurogenesis under physiological and pathophysiological conditions is a matter of debate. The aim of this study is to investigate the effect of microglia on hippocampal neurogenesis and to look at how vasoactive intestinal peptide (VIP), a potent immunomodulatory neuropeptide found in dentate gyrus interneurons, modulates the effects microglia have on neurogenesis. In this study, we have investigated the effect of microglial depletion (using MAC-SAP), microglial co-culture and addition of microglia-conditioned-medium on primary hippocampal cell cultures derived from post-natal rats. We have also looked at how pre-treatment of microglia with VIP alters their effect on hippocampal cultures. Bromodeoxyuridine was used as a marker of cell proliferation. Quantification of cell death was achieved using the nuclear stain 4′,6-diamidino-2-phenylindole and Propidium Iodide. Immunohistochemistry was used to phenotype cells for nestin, GFAP and Tuj1. We have shown that microglial depletion results in a reduction in the numbers of nestin, GFAP and Tuj1 expressing cells. This reduction has been shown to be attributable to a decrease in cell survival and proliferation. Conversely, co-culture of microglia with hippocampal neurons or addition of their conditioned medium results in increased cell survival and proliferation. Pre-treatment of microglia with VIP was shown to increase both their proliferative and trophic effect on hippocampal cultures. In conclusion, this study demonstrates that microglia induce proliferative and trophic effects on neural stem cells and immature neurons through the release of soluble factors. Furthermore, we provide evidence that VIP regulates the release of these soluble factors, thus identifying a novel neuro-immuno-neurogenic link.
Related Products: Mac-1-SAP rat (Cat. #IT-33)
Caudal hindbrain catecholaminergic projection to the ventrolateral bed nucleus of the stria terminalis (vlBNST): Assessment of role in glucoprivic and CCK feeding responses and corticosterone secretion.
Dinh TT, Huston NJ, Ritter S (2009) Caudal hindbrain catecholaminergic projection to the ventrolateral bed nucleus of the stria terminalis (vlBNST): Assessment of role in glucoprivic and CCK feeding responses and corticosterone secretion. Neuroscience 2009 Abstracts 87.16/CC80. Society for Neuroscience, Chicago, IL.
Summary: Catecholamine neurons in the caudal hindbrain provide a significant innervation of the vlBNST and some of these neurons co-innervate the paraventricular nucleus of the hypothalamus (PVH). We previously found that PVH injections of the retrogradely-transported immunotoxin, anti-dopamine beta hydroxylase (DBH) saporin (anti-DBH-sap), profoundly reduced feeding and corticosterone responses to glucoprivation, but did not alter CCK-induced satiety, which has been linked to catecholamine neurons in the A2 cell group. In this experiment, we examined the origin of the vlBNST/PVH catecholamine projection and assessed its role in responses to glucoprivation and CCK. Retrograde tracing from vlBNST and PVH revealed dually-projecting DBH-ir (norepinephrine or epinephrine) neurons primarily in A2, A1 and caudal C1, with a few cells also present in C2. Dually-projecting PNMT-ir (epinephrine) were also present in C1 and in small numbers in C2. Overall, the relative numbers of DBH- and PMNT-ir neurons with projections to both vlBNST and PVH and the locations of these triply-labeled neurons indicate that the dually-projecting neurons are predominantly noradrenergic. Injections of anti-DBH-sap into the vlBNST produced cell losses in the hindbrain that were anatomically consistent in distribution and number with the tracing results. This immunotoxin caused a loss of DBH neurons in the dorsal hindbrain that was concentrated in the A2 cell group (14.6 – 13.68 mm caudal to bregma), where a maximum of 50% of DBH neurons were lesioned: 50% loss at 14.6 mm caudal to bregma, 25% at 13.24 mm and 0% at 11.96 mm. In ventral hindbrain, loss of DBH cell bodies was predominantly in the A1 cell group (14.6 – 12.8 mm caudal to bregma), where a maximum of 60% of DBH-ir neurons were lesioned: 60% loss at 14.6 and 13.68 mm, 22% at 13.24 and and 0% at 12.8 mm. In the dorsal hindbrain nearly all cells retrogradely labeled from the vlBNST were ipsilateral and DBH-ir. In ventral hindbrain there was a significant contralateral projection to vlBNST that was not DBH-ir. Anti-DBH-sap lesions did not impair the feeding, blood glucose or corticosterone responses to 2-deoxy-D-glucose (250 mg/kg) and did not impair the suppression of feeding by CCK-8 (4 ug/kg), indicating that the catecholamine projection to the vlBNST, including the dually-projecting neurons that innervate both the vlBNST and the PVH, is not required for these responses.
Related Products: Anti-DBH-SAP (Cat. #IT-03)
Role of cholinergic NBM neurons in timing and divided attention.
Mcauley J, Stewart AL, Pang KCH (2009) Role of cholinergic NBM neurons in timing and divided attention. Neuroscience 2009 Abstracts 95.12/EE81. Society for Neuroscience, Chicago, IL.
Summary: The nucleus basalis magnocellularis (NBM) provides cholinergic and GABAergic innervation to the neocortex. In previous studies, non-selective lesions of the NBM using ibotenic acid impaired interval timing and divided attention. Rats with NBM damage produced rightward shifts in peak times, demonstrating overproduction (underestimation) of time. Additionally, NBM damage impaired the ability to divide attention when timing two intervals simultaneously. Damage of the frontal cortex produced similar impairments in timing and divided attention as NBM damage, suggesting the NBM projections to frontal cortex were critical. Currently, the NBM neurons responsible for modulating timing and attention are unknown. The present study will determine the importance of cholinergic NBM neurons in timing and attention using the selective immunotoxin 192-IgG saporin (192-SAP). Sixteen Sprague Dawley rats were first trained on a peak-interval (PI) procedure using fixed-intervals of 12 s and 24 s paired with light and tone stimuli, respectively. During this phase, only one stimulus was presented during a trial (focused attention). Following the initial phase of training, rats were trained on a divided attention version of the peak-interval procedure, in which 2 stimuli were presented simultaneously in a trial and rats timed both intervals in parallel. Rats were administered 192-SAP into the NBM (n = 10) or given SHAM surgeries (n = 6). Following surgery, 192-SAP rats produced a leftward shift in timing with increased variability compared to SHAM rats. These changes in timing were observed in both focused and divided attention conditions, but the effects were larger in divided attention conditions than in focused attention conditions. Results implicate the cholinergic NBM neurons in the modulation of interval timing and divided attention. Current work is verifying the selectivity and efficacy of the 192-SAP administration. Additional studies will examine the role of GABAergic NBM neurons in interval timing and divided attention.
Related Products: 192-IgG-SAP (Cat. #IT-01)
Multiple neuromodulator depletion interacts with fornix transection to impair episodic memory in monkeys.
Croxson PL, Baxter MG (2009) Multiple neuromodulator depletion interacts with fornix transection to impair episodic memory in monkeys. Neuroscience 2009 Abstracts 98.4/EE128. Society for Neuroscience, Chicago, IL.
Summary: Acetylcholine may play an important role in some aspects of cognitive function, and in particular in episodic memory. However, the role of other neuromodulatory (NM) substances, such as noradrenaline, dopamine, and serotonin, in episodic memory is less well-defined. We tested monkeys on a model of episodic memory in monkeys and carried out specific depletions of different neuromodulators within inferotemporal cortex (IT). Six rhesus macaque monkeys (five male) were trained on an object-in-place scene learning task that models key features of human episodic memory, because learning occurs rapidly (often in a single trial) in the contaxt of unique background scenes. After preoperative testing three monkeys were given injections into IT of the immunotoxin ME20.4-saporin interleaved with injections of 6-hydroxydopamine and 5,7-dihydroxytryptamine. This resulted in depletion of acetylcholine, dopamine, noradrenaline and serotonin throughout IT (group NM+ACh). Three monkeys received the same treatment but omitting the ME20.4-saporin, thus depleting dopamine, noradrenaline and serotonin, but sparing acetylcholine (group NM). Neither group of monkeys (NM+ACh or NM) were impaired in postoperative scene learning. We found previously that addition of fornix transection to depletion of ACh from IT severely impaired scene learning relative to fornix transection alone (Browning et al. 2009, Cerebral Cortex). Therefore we gave each monkey in groups NM and NM+ACh a bilateral fornix transection and performed a further postoperative performance test. As expected, monkeys in group NM+ACh were severely impaired in scene learning following fornix transection. However, monkeys in group NM were also severely impaired in scene learning following fornix transection, despite having no visible damage to cholinergic innervation. Depletion of cholinergic, dopaminergic, adrenergic and serotoninergic innervation of inferotemporal cortex, therefore, is not sufficient to impair monkeys’ performance on an episodic memory task. Furthermore, there is a synergistic interaction between the NM depletion and fornix transection in this task, like that between ACh depletion and fornix transection. This may be due to a general reduction in cortical function after NM depletion, albeit not sufficient to cause episodic memory impairment on its own, which exacerbates the effect of fornix transection. It may point to one or more of these neuromodulators having a role in post-lesion plasticity, a role that is also played by ACh. Importantly, these data suggest that intact cholinergic innervation is not sufficient for post-lesion plasticity.
Related Products: ME20.4-SAP (Cat. #IT-15)