sfn2008

36 entries

Sonic hedgehog expression and glial reaction after neurotoxic lesion of adult mice spinal cord by Cholera Toxin-B Saporin

Gulino R, Gulisano M (2008) Sonic hedgehog expression and glial reaction after neurotoxic lesion of adult mice spinal cord by Cholera Toxin-B Saporin. Neuroscience 2008 Abstracts 124.14/B14. Society for Neuroscience, Washington, DC.

Summary: The spinal cord (SC) has ever been considered non-neurogenic because no neurons seem to be generated in the intact SC and only very few recent articles have reported spontaneous generation of new neurons after lesion. Conversely, many studies have demonstrated the occurrence of glial reaction after either mechanical or selective neurotoxic lesion. Sonic hedgehog (Shh) is a member of hedgehog family of secreted glycoproteins, which stimulate cell proliferation as well as neuron and oligodendrocyte differentiation during either development and adulthood. Few data are available about its role in the adult SC after injury. In this study, we used Cholera toxin-B saporin (CTB-sap), a retrogradely transported, ribosome-inactivating toxin, to induce a mild neurotoxic depletion of motoneurons within lumbar SC and to subsequently study the expression levels of Shh and the possible cell proliferation and differentiation within the depleted SC of young adult mice. After an injection of CTB-sap into the gastrocnemius muscle, we found a 30% depletion of lumbar SC motoneurons, and a comparable decrease of ChAT expression levels in the lumbar SC, one week after lesion. Moreover, we found a significant down-regulation of Shh expression, which significantly correlate with ChAT decrease. Both proteins recovered to near normal levels of expression at one month after lesion. The expression of ChAT also correlate with the performance of mice on a grid walk test. So, the observed spontaneous recovery of locomotion was associated with the spontaneous recovery of ChAT and Shh expression. Moreover, we observed a cell proliferation within the depleted SC parenchyma, which was associated with a visible increase of GFAP-positive astrocytes in the same area. Colocalization studies showed that the majority of these proliferating cells are active astrocytes. We hypothesized that Shh expression could have a role in both SC plasticity and the observed glial reaction after neurotoxic lesion. The restoration of normal levels of Shh during the first days after lesion could be a way to partially inhibit glial reaction and to improve functional recovery.

Related Products: CTB-SAP (Cat. #IT-14)

A brainstem generator for cutaneous allodynia associated with migraine headache

Edelmayer RM, Vanderah TW, Majuta L, Fioravanti B, De Felice M, Chichorro JG, Ossipov MH, King T,Lai J, Kori SH, Nelsen AC, Cannon KE, Heinricher MM, Porreca F (2008) A brainstem generator for cutaneous allodynia associated with migraine headache. Neuroscience 2008 Abstracts 171.15/LL16. Society for Neuroscience, Washington, DC.

Summary: Migraine patients often demonstrate cutaneous allodynia that begins unilaterally and intracranially and spreads, via unknown mechanisms, to contralateral and extracranial body regions. As cutaneous allodynia likely reflects the development of central sensitization, we hypothesized that descending facilitatory influences from the rostral ventromedial medulla (RVM) might underlie the generalized expression of this phenomenon. We employed a modified model of application of inflammatory mediators (IM) to the dura of unanesthetized animals and explored the possible requirement of a brainstem site for expression of generalized cutaneous allodynia. Rats were surgically implanted with two cannulas, one of which permitted the application of IM to the surface of the dura and the other for administration of compounds to the RVM, 7 days after surgery. Tactile withdrawal thresholds of the peri-ocular region of the face as well as the hindpaws were tested pre-surgery, post-surgery, and up to 6 hr after application of IM. Bupivacaine or YM022 (CCK2 receptor antagonist) were administered to the RVM at various times after IM. In some studies dermorphin-saporin was administered as a single microinjection to elicit a cytotoxic effect on presumed pain facilitation cells in the RVM; these rats were tested with IM after a further 28 days. Recordings of RVM “ON” and “OFF” cell activity were also performed in separate groups of naïve animals prior to, and after, IM application to the dura. Dural IM produced robust facial and hindpaw allodynia which peaked after approximately 3 hr and recovered to baseline thresholds by approximately 6 hr. RVM bupivacaine, YMO22, or cytotoxic destruction of pain facilitation cells had no effects on sensory thresholds alone, but prevented or significantly attenuated the expression of IM-induced cutaneous allodynia. In addition, IM applied to the dura produced a sustained increase in the discharge of RVM ON cells while transiently inhibiting OFF cells. Facial and hindpaw allodynia associated with dural stimulation may be a useful surrogate of migraine-associated pain which may be exploited mechanistically for the development of novel therapeutic strategies. The data demonstrate the requirement of descending facilitation from the RVM for the expression of cranial and extracranial cutaneous hypersensitivity and offer direct evidence of brainstem involvement in cutaneous allodynia associated with headache pain.

Related Products: CCK-SAP (Cat. #IT-31)

The ablation of hindbrain catecholamine neurons innervating medial hypothalamic nuclei abolishes glucoprivic feeding, but spares the orexigenic response to ghrelin

Emanuel AJ, Dinh TT, Ritter S (2008) The ablation of hindbrain catecholamine neurons innervating medial hypothalamic nuclei abolishes glucoprivic feeding, but spares the orexigenic response to ghrelin. Neuroscience 2008 Abstracts 85.2/RR15. Society for Neuroscience, Washington, DC.

Summary: Ghrelin is an orexigenic peptide synthesized in the stomach and secreted during fasting. Receptors for ghrelin are present in the brain and direct injection of ghrelin into the brain evokes feeding. Nevertheless, Y. Date et. al. (2002) have claimed that gastric vagal afferent neurons are the major pathway conveying ghrelin’s signals for starvation and growth hormone secretion to the brain. Furthermore, this group (Date et. al., 2006), has reported that noradrenergic neurons transmit ghrelin’s orexigenic signals from the hindbrain to the hypothalamus. The latter assertion was based on the loss of ghrelin-induced feeding in rats injected into the arcuate nucleus (ARC) with anti-dopamine beta hydroxylase (DBH) conjugated to saporin (DSAP), which retrogradely destroys DBH-containing neurons. We previously showed that DSAP microinjection either into the hypothalamic paraventricular nucleus (PVH) or ARC abolished glucoprivic feeding. Since glucoregulatory responses include alterations of both feeding and growth hormone secretion, we reasoned that the same catecholamine neurons sensitive to glucoprivation may contribute to these responses following ghrelin. To investigate this issue further, we microinjected DSAP (n=7) or unconjugated saporin (SAP control, n=7) bilaterally into the PVH of Sprague-Dawley rats (approximately 400 g BW). Three weeks later, daytime tests for feeding responses to 2-deoxyglucose (2DG, 200 mg/kg, 4-hr test) and ghrelin (15 µg/kg, i.p., 2-hr test) were conducted. As expected, DSAP abolished 2DG-induced feeding. However, the response to ghrelin was not abolished in DSAP treated rats. In fact, feeding in response to ghrelin was significantly enhanced in DSAP-treated rats, compared to the control SAP group (p<0.05). These results confirm our prior findings relative to the role of catecholamine projections in glucoprivic responses, but they contradict the results previously reported by Date et. al. The difference between our injection sites (we injected DSAP into the PVH, and Date injected into the ARC) is not likely to account for the different results since injections of DSAP into either site eliminate DBH terminals throughout the medial hypothalamus and appear to lesion the same population of catecholamine neurons. Therefore, until more detailed analysis is conducted, we conclude that hindbrain catecholamine neurons are required for glucoprivic but not ghrelin-induced feeding.

Related Products: Anti-DBH-SAP (Cat. #IT-03)

Role of medial septum-diagonal band of Broca neurons in cognitive flexibility

Pang K, Janke K, Servatius RJ (2008) Role of medial septum-diagonal band of Broca neurons in cognitive flexibility. Neuroscience 2008 Abstracts 89.20/SS37. Society for Neuroscience, Washington, DC.

Summary: Cholinergic and GABAergic neurons are major components of the septohippocampal pathway, and comparisons between the two neuronal populations are important for understanding the function of medial septum and vertical limb of the diagonal band (MSDB). Recently, we have been investigating the importance of MSDB neurons in cognitive flexibility. Cognitive flexibility is commonly examined in procedures that require reversal of stimulus-reward associations and those that require shifts in attention set, involving switching attention to different stimulus dimensions. Our recent studies demonstrated that selective damage of GABAergic but not cholinergic MSDB neurons impaired spatial reversal. The present study will determine whether selective lesions of cholinergic or GABAergic MSDB neurons impairs shifting of attentional set. Sprague Dawley rats will be administered saline, GAT1-saporin or 192-IgG saporin into the MSDB to produce no damage, selective GABAergic damage or selective cholinergic damage, respectively. Verification of the lesions will be performed using immunocytochemistry at the end of the study. The behavioral procedure will occur in a plus maze. Rats will start in one of two arms opposite each other (i.e., north and south arms) randomized across trials. On any single trial, the arm opposite the starting arm will be blocked forming a T-maze. Rats will have a choice of entering one of the remaining 2 arms (east or west arms) for food reinforcement. Half of the rats will be reinforced to make an egocentric response (left or right turn) and the other rats will be reinforced to go to a particular arm (east or west; allocentric response) regardless of starting location. After reaching criterion (10 consecutive correct choices), the goal location will be reversed (i.e., left turn to right turn or east to west arm) or shifted to a different dimension (i.e., left turn to east arm or west arm to right turn). It is expected that rats treated with GAT1-saporin, but not 192-saporin, will be impaired on the reversal procedure, similar to previous studies. Impairments in shifting attention set would suggest a global impairment in cognitive flexibility. However, an impairment in the reversal procedure but not shifting of attention set would be similar to recently described deficits in the nucleus basalis magnocellularis using ibotenic acid and 192-IgG saporin lesions (Tait and Brown, Behav Brain Res. 187:100, 2008). The results of this study will provide important insight into the role of the MSDB in learning, attention and cognitive flexibility.

Related Products: 192-IgG-SAP (Cat. #IT-01), GAT1-SAP (Cat. #IT-32)

192-IgG Saporin lesions of the medial septum or nucleus basalis magnocellularis disrupt exploratory trip organization

Wallace DG, Winter SS, Martin MM, Mcmillin JL (2008) 192-IgG Saporin lesions of the medial septum or nucleus basalis magnocellularis disrupt exploratory trip organization. Neuroscience 2008 Abstracts 90.15/SS57. Society for Neuroscience, Washington, DC.

Summary: Previous work has demonstrated that rats use self-movement cues to organize their exploratory behavior. The hippocampus and several cortical areas have been implicated in processing self-movement cues. The current study investigated whether selective cholinergic deafferentation of the hippocampus or cortex differentially influenced the organization of exploratory behavior. Long Evans female rats received injections of 192 IgG-Saporin or saline into the medial septum (MS) or nucleus basalis magnocellularis (NB). Subsequent to recovery, rats were placed on a large circular table that provided access to a refuge under complete dark conditions (infrared cameras and goggles were used to visualize the rat). All rats established a home base in the refuge; however, impairments in exploratory trip organization specific to the homeward segment were observed in MS and NB rats. Both groups displayed increased variability in the temporal pacing of speeds on the homeward return, consistent with impaired distance estimation. Only the NB group displayed a significant reduction in stop duration after short, medium, and long searching progressions. These observations are consistent with different roles for hippocampal and cortical cholinergic function in processing self-movement cues.

Related Products: 192-IgG-SAP (Cat. #IT-01)

The role of orexin in sexual behavior and sexual reward of the male rat

Di Sebastiano AR, Yong-yow S, Coolen LM (2008) The role of orexin in sexual behavior and sexual reward of the male rat. Neuroscience 2008 Abstracts 97.4/UU18. Society for Neuroscience, Washington, DC.

Summary: The hypothalamic neuropeptide orexin has been demonstrated to play a role in reward related to drugs of abuse and is potentially involved in regulation of natural rewarding behaviors. Male sexual behavior has been shown to activate orexin neurons and this behavior is altered by administration of orexin receptor agonists or antagonists. However, the exact role of orexin in male sexual performance, sexual motivation and reward is currently unclear. Therefore, the goal of the current study was to test the hypothesis that orexin plays a critical role in sexual behavior, motivation and reward. First, using Fos as a marker for neural activation, we investigated activation of orexin neurons following different parameters of sexual behavior in sexually naïve and experienced male rats. It was demonstrated that orexin neurons in the lateral hypothalamic area (LHA) and in the dorsal medial hypothalamus/perifornical (PFA-DMH) region become activated with presentation of the female and there is no further increase in activation with other components of mating (15-30% in LHA; 65-80% in PFA-DMH). Next, we tested the functional role of orexin utilizing orexin-cell body specific lesions. Adult male rats underwent lesion or sham surgery using the targeted toxin orexin-saporin or blank-saporin respectively. Following two weeks recovery, sexual behavior was recorded over the course of four mating trials. During the first mating trial, males with complete lesions showed significantly shorter latencies to mount and intromit. This suggests that lesions facilitated sexual performance in naïve animals. This facilitation was attenuated by sexual experience as lesions did not affect any parameter of sexual behavior in experienced animals. Next, runway tests were conducted to determine motivation to run towards a potential partner over two conditioning trials. Lesions did not alter sexual motivation, as lesion and sham males all demonstrated increased speed to run towards an estrous female during the second trial. Finally, a conditioned place preference (CPP) paradigm was conducted as a measure of sexual reward. All groups formed a conditioned preference for the mating-paired chamber, indicating that lesions did not significantly disrupt sexual reward. Overall, these findings suggest that orexin does not play a critical role in male sexual performance, motivation, and reward, however may be involved in general arousal related to sexual behavior.

Related Products: Orexin-B-SAP (Cat. #IT-20), Blank-SAP (Cat. #IT-21)

Shopping Cart
Scroll to Top