- Home
- Knowledge Base
- sfn2004
sfn2004
The basal forebrain cholinergic system is essential for cortical plasticity and functional recovery following brain injury
Conner JM, Chiba AA, Tuszynski MH (2004) The basal forebrain cholinergic system is essential for cortical plasticity and functional recovery following brain injury. Neuroscience 2004 Abstracts 685.12. Society for Neuroscience, San Diego, CA.
Summary: Localized damage to the motor cortex typically results in impaired motor function. Functional recovery following focal brain injury presumably requires the reorganization of cortical circuitry, enabling undamaged areas remote from the lesion site to take over function. Neuronal mechanisms mediating plasticity of cortical representations are not fully understood, but recent studies have indicated that the basal forebrain cholinergic system may play an essential role. In the present study, we investigated the hypothesis that the basal forebrain cholinergic system is essential for enabling cortical reorganization required for functional recovery following focal motor cortex lesions. Following focal cortical injury, performance in a previously learned skilled reaching task dropped by ~75%. After 5-weeks of rehabilitative training, normal (cholinergically-intact) rats recovered 55.2 ± 4.4% of their pre-lesion reaching performance. Rats with specific lesions of the cholinergic neurons projecting to the cortex showed only 18.1 ± 7.7% recovery (p<0.002). Intracortical mapping revealed that massive reorganization of motor representations had occurred in the cortex following focal cortical injury and rehabilitative training. A significant 48.6 ± 12.2% increase (p=0.001) in the size of the rostral forelimb area (RFA) was seen in cholinergically-intact, functionally recovered, rats. In contrast, the size of the RFA did not change in cholinergic-lesioned animals. Subsequent ablation of the RFA completely disrupted skilled reaching performance, suggesting the RFA was essential to the recovered function. These results demonstrate that functional recovery following discrete cortical injury requires basal forebrain cholinergic mechanisms and suggest that the basis for this recovery is the cholinergic-dependent reorganization of motor representations.
Related Products: 192-IgG-SAP (Cat. #IT-01)
Cell-body lesions of basal forebrain impair reversal learning but not attentional set-shifting in rats
Tait DS, Brown VJ (2004) Cell-body lesions of basal forebrain impair reversal learning but not attentional set-shifting in rats. Neuroscience 2004 Abstracts 779.12. Society for Neuroscience, San Diego, CA.
Summary: There is considerable evidence for a role of basal forebrain acetylcholine in a wide range of attentional tasks (see Sarter & Bruno, 2000, Neurosci, 95:933-952), but previous work from this laboratory found that basal forebrain cholinergic projections are not critical for the acquisition, maintenance and shifting of attentional set (Tait et al, 2002 SfN abstr 286.2). As GABAergic basal forebrain projections to cortex may be important for “cognitive flexibility” (Sarter & Bruno, 2002, Eur J Nsci, 15:1867-1873), the present study assessed the effects of non-specific basal forebrain lesions. Male Lister hooded rats received infusions of 200nl 0.06M ibotenic acid into basal forebrain, at coordinates: nosebar –3.3; AP –0.9; ML ±2.9; DV –6.9. We used the rat attentional-set shifting task (Birrell & Brown, 2000, JNsci, 20:4320-4324), in which rats forage in digging bowls for food rewards, to assess discrimination learning (based on the odor of the bowls or the medium in which the food was hidden), reversal learning and attentional-set shifting (when the relevant aspect of the stimulus is switched; for example, a rat previously attending to odor, now must attend to digging medium or vice versa). There was no impairment in discrimination acquisition or in shifting of attentional-set. Lesioned rats were impaired only on the first of three discrimination reversals, taking significantly longer to reach criterion than controls. Prior evidence indicating no effect of selective BF cholinergic depletion via 192-IgG-saporin administration on reversal performance (Tait et al, 2002) leads us to conclude that the non-cholinergic neurons – most likely the GABAergic projection to prefrontal cortex and thalamus – have an important role in reversal learning. These data are strikingly similar to the effects of excitotoxic basal forebrain lesions in monkeys (Roberts et al, 1992, NSci, 472:251-264).
Related Products: 192-IgG-SAP (Cat. #IT-01)
Attention, uncertainty, and acetylcholine: Effects of nucleus basalis cholinergic lesions on probabilistic inference
Cordova CA, Yu AJ, Chiba AA (2004) Attention, uncertainty, and acetylcholine: Effects of nucleus basalis cholinergic lesions on probabilistic inference. Neuroscience 2004 Abstracts 779.13. Society for Neuroscience, San Diego, CA.
Summary: Animal investigations suggest that the basal forebrain corticopetal cholinergic system helps to regulate attention to unpredictable events. In light of these findings, computational theorists propose that cholinergic neurons precisely alter the way that sensory stimuli are processed in the cortex in light of how well predicted they are. In an initial test of this theory, two groups of rats were trained to respond to probabilistic stimuli presented serially in one of four spatial locations with varying degrees of predictive uncertainty (arising from a 2-layer Hidden Markov model). Following training, one group of rats was given a selective cholinergic lesion of the nucleus basalis/substantia innominata region of the basal forebrain using 192-IgG Saporin. The lesioned rats were unable to allocate attention appropriately, as evidenced by the decreased accuracy of responses to less probable stimuli. These findings provide support for the notion that the basal forebrain corticoptetal cholinergic system facilitates attention by regulating the balance of learned expectations and sensory processing during stimulus inference.
Related Products: 192-IgG-SAP (Cat. #IT-01)
Behavioral characteristics of pedunculopontine tegmental nucleus lesioned and nucleus basalis magnocellularis lesioned rats in a test of vigilance
Taylor CL, Rostron PR, Latimer MP, Winn P (2004) Behavioral characteristics of pedunculopontine tegmental nucleus lesioned and nucleus basalis magnocellularis lesioned rats in a test of vigilance. Neuroscience 2004 Abstracts 780.4. Society for Neuroscience, San Diego, CA.
Summary: Previous work has shown pedunculopontine tegmental nucleus (PPTg) lesioned rats make more omissions on a vigilance task but improve if the target is longer. We compared vigilance performance of PPTg rats with rats bearing 192 IgG Saporin lesions of the nucleus basalis magnocellularis (NbM). The task involved a period of darkness before a dim light of variable duration, followed by a bright light target. A lever press was required during the target to receive food reward, while failure to press during the target constituted an omission. Rats were pre-trained to a criterion of >70% correct and <20% omissions at 1500ms target duration. Post-lesion, rats were assessed for 10 days at 1500ms, 5 days at 4000ms, and 5 further days at 1500ms target durations. Results showed both groups increased omissions relative to controls but this effect was transient in NbM rats. The percentage of omissions in all groups was sensitive to manipulation of target duration. Because increasing target duration also increased the time allowed to make a correct response we re-coded omissions in the 1500ms task to include only those occurring a further 2500ms following target offset (making the response time frame comparable with the 4000ms task). Again, comparison with omissions from the 4000ms task continued to show target duration sensitivity. This finding lends support to PPTg as well as NbM involvement in attention. In order to address why lesioned rats made more omissions in the task we analyzed video data of behaviour at the time of the dim and bright light. Results suggest increased distraction in PPTg lesioned rats while NbM lesioned rats additionally showed failed attempts to lever press in response to the bright signal. This finding has implications for studies using short response time frames where NbM rats may not have time to recover from a failed lever press attempt.
Related Products: 192-IgG-SAP (Cat. #IT-01)
Neurokinin 1 receptor expressing interneurons of the BLA regulate anxiety-like responses in the rat
Truitt WA, Dietrich AD, Fitz SD, Minick PE, Shekhar A (2004) Neurokinin 1 receptor expressing interneurons of the BLA regulate anxiety-like responses in the rat. Neuroscience 2004 Abstracts 782.5. Society for Neuroscience, San Diego, CA.
Summary: The Basolateral Nucleus of the Amygdala (BLA) has been implicated in the regulation and development of anxiety. In general, regarding BLA projection neurons, excitation tends to increase, while inhibition tends to reduce anxiety-like responses. These projection neurons, which comprise approximately 85% of the BLA neurons, are tightly regulated by the activity of local circuit GABAergic interneurons. To date, at least four distinct interneuronal subpopulations have been identified in the BLA, with characteristic morphological and physiological properties suggestive of functional diversity. Yet the in vivo functional selectivity of these subpopulations has not been critically examined. Here we propose to examine the function of one specific interneuronal subpopulation within the BLA by making selective lesions and monitoring anxiety-like behavior. To accomplish this objective the subpopulation of BLA interneurons expressing NK-1r receptors were ablated with the targeted toxin SSP-saporin (SAP). Lesions were made by a series of 6 bilateral, 500nl injections spread throughout the anterior BLA. Control rats were injected with an equal volume of blank-SAP, which does not enter the cells. SSP-SAP injections significantly reduced the number of NK-1r expressing cells compared to blank-SAP treated rats, with little to no nonspecific damage. Lesioning NK-1r expressing cells resulted in increased anxiety-like responses in the social interaction (SI) and elevated plus maze (EPM) tests. Specifically, SI time compared to pre-surgery value was significantly reduced in lesion rats. Lesion rats also had fewer open arm entries in the EPM compared to control rats. Furthermore, lesioned rats failed to recover from this decrease in SI even after 4 weeks of testing. These results suggest that the subpopulation of interneurons within the BLA that express NK-1r is critical in regulating anxiety-like behavior.
Related Products: SSP-SAP (Cat. #IT-11)
Electrophysiological profile of IgG192saporin-lesioned rats in the pilocarpine model of epilepsy
Benassi SK, Blanco MM, Mello LE (2004) Electrophysiological profile of IgG192saporin-lesioned rats in the pilocarpine model of epilepsy. Neuroscience 2004 Abstracts 452.14. Society for Neuroscience, San Diego, CA.
Summary: In order to investigate the importance of the basal forebrain cholinergic reorganization to the epileptogenesis process, adult male Wistar EPM-1 rats (180-220g) were subjected to status epilepticus (SE) induction by pilocarpine injection (320mg/kg, i.p.), after cholinergic lesion through IgG192-saporin (5μg/5μL, i.c.v.). Two months after SE induction animals were deeply anesthetized (choral hydrate 400 mg/kg, i.p.) and subjected to the electrical stimulation of the right CA3 and recorded (3M NaCl, 1MΩ) in the contralateral (left) CA1 region. Histological analysis included Nissl staining for the location of stimulating and recording electrodes and histochemistry for acetylcholinesterase (AChE) for the assessment of IgG192-induced lesions. The administration of the IgG192-saporin consistently and specifically diminished AChE staining in the hippocampus and neocortex while not affecting other brain areas (e.g., amygdala, striatum, etc). As compared to naive control animals, pilocarpine-treated animals generally showed loss of paired-pulse inhibition and the presence of multiple population spikes. Epileptic animals that were pre-treated with the cholinergic toxin did not differ from untreated epileptic animals in terms of paired-pulse inhibition or the presence of multiple population spikes. Large paired-pulse facilitation (P2>10 P1) for interstimulus intervals varying from 20 to 200 ms was encountered for both groups of epileptic animals with no distinction between each other. We suggest that the basal forebrain cholinergic system does not have a major role in defining the hyperexcitability of hippocampal circuits in the pilocarpine model of epilepsy.
Related Products: 192-IgG-SAP (Cat. #IT-01)
Investigation of the functional role of non-peptidergic primary afferent sensory fibres in the transmission of pain related information
Bailey AL, Bennett G, Ribeiro-da-Silva A (2004) Investigation of the functional role of non-peptidergic primary afferent sensory fibres in the transmission of pain related information. Neuroscience 2004 Abstracts 484.1. Society for Neuroscience, San Diego, CA.
Summary: It is well established that small diameter, unmyelinated, primary afferent C-fibres can be divided into two neurochemically defined populations, one that contains neuropeptides such as Substance P (SP) and Calcitonin-gene related peptide (CGRP) and the other which binds Isolectin B4 (IB4) and is relatively peptide negative. A great deal of circumstantial evidence indicates that the non-peptidergic afferents play a functionally distinct role in pain transmission compared to peptidergic afferents. Indeed, the concept of two distinct subpopulations of C-fibres would indicate the occurrence of parallel processing in pain pathways. However, the functional role of non-peptidergic afferents in the transmission of pain-related information is still unclear. In an attempt to clarify their functional role, we decided to study the development of hyperalgesia and allodynia in adult male Sprague-Dawley rats with selective ablation of IB4-binding, non-peptidergic afferent input to the dorsal horn. To achieve this, we injected IB4 conjugated to Saporin (SAP) into the left sciatic nerve and examined both neurochemical and behavioural changes over a month’s time. Our data show that following injection of the toxin conjugate, IB4-labelling, P2X3-immunopositive fibre terminals disappear from a band in the superficial dorsal horn that expands over a two week period until it comprises most of the mediolateral extent of the dorsal horn. Behavioural data indicates that there are transient changes in acute pain thresholds to mechanical and thermal stimuli. Changes in pain thresholds in animals lacking non-peptidergic input into the spinal dorsal horn in an animal model of Complete Freund’s Adjuvant (CFA) induced inflammation will also be presented.
Related Products: IB4-SAP (Cat. #IT-10)
Effects of cholinergic deafferentation of prefrontal cortex on working memory: A convergence of behavioral and modeling results
McGaughy JA, Koene R, Eichenbaum HB, Hasselmo ME (2004) Effects of cholinergic deafferentation of prefrontal cortex on working memory: A convergence of behavioral and modeling results. Neuroscience 2004 Abstracts 551.7. Society for Neuroscience, San Diego, CA.
Summary: In humans, the prefrontal and medial temporal lobe areas are differentially activated during working memory dependent upon the whether stimuli are familiar or novel. Prefrontal activation occurs with highly familiar stimuli whereas the medial temporal lobe is activated by novel stimuli (Stern, et al. Hippocampus v. 11, 2001). The maintenance of novel information in the entorhinal cortex (EC) is hypothesized to depend upon self-sustained spiking activity in single neurons produced by cholinergic activation of muscarinic receptors (Klink and Alonso, J. Neurophys. 77, 1997). The current study investigated whether cholinergic modulation of the prefrontal cortex regulates sustained spiking activity for familiar stimuli. Rats were trained in an odor-cued delayed non-matching to sample task. After reaching asymptotic performance, rats were infused bilaterally with either 192 IgG-saporin (SAP) or its vehicle into the prefrontal cortex(PFC;0.01μg/μl;1.0μl/injection). Following PFC-SAP lesions,rats were impaired in working memory with highly familiar odors when choice stimuli were probed sequentially but not simultaneously. Though PFC-SAP rats reliably sampled both choices, they failed if the first cup probed matched the sample. PFC-SAP rats were also unable to maintain multiple items in memory. These impairments cannot be explained by the loss of response inhibition, the conditional response rule, attentional or sensory abilities. It is hypothesized that in the absence of a functional frontal cortex, the PFC-SAP rats relied on the EC. Computational modeling of EC suggests repetitions of an odor or the presentations of multiple odors disrupt the pattern of self-sustained spiking in this area and, thus, the representation of the stimulus. These data elucidate the interplay between the PFC and EC during a working memory task.
Related Products: 192-IgG-SAP (Cat. #IT-01)
A novel mouse model for Parkinson’s disease using an immunotoxin directed at the dopamine transporter
Stead S, Doering LC (2004) A novel mouse model for Parkinson’s disease using an immunotoxin directed at the dopamine transporter. Neuroscience 2004 Abstracts 563.1. Society for Neuroscience, San Diego, CA.
Summary: Current laboratory models of Parkinson’s disease utilize neurotoxins directed at midbrain dopamine neurons to mimic nigro-striatal dopaminergic neuron degeneration. To date, however, there is no single model that accurately simulates the pathogenic, histological, biochemical and clinical features relevant for the investigation of PD. The most common laboratory rodent model of Parkinson’s uses the neurotoxin 6-hydroxydopamine (6-OHDA) to cause relatively acute degeneration of the dopamine neurons in the substantia nigra (Schwarting RKW and Huston JP, 1996, Prog Neurobiol., 50:275-331). Axonally transported toxins can be used to make selective lesions in the central nervous system. We have found that a slower degeneration of the SN can be achieved with an immunotoxin directed against the dopamine transporter (DAT). This immunotoxin, consisting of the highly active ribosome inactivating protein Saporin linked to an antibody to the dopamine transporter, was recently reported to cause selective degeneration of the SN in rats (Wiley RG et al., 2003, Cell Mol Neurobiol., 23:839-850.). We have shown that unilateral stereotaxic injection of the Anti-DAT-Saporin into the striatum of female C57BL6 mice causes a progressive reduction in the numbers of DA neurons in the SN in comparison to the non-lesioned hemisphere, and sham controls. Furthermore, in parallel to the immunohistochemical dopamine neuron death, the animals display a pronounced circling behaviour when challenged with apomorphine (6mg/kg). This model is akin to the gradual deterioration of the nigro-striatal system that occurs in Parkinson’s Disease and provides a system to intervene at various stages of dopamine neuron loss and evaluate the effectiveness of stem cell therapy.
Related Products: Anti-DAT-SAP (Cat. #IT-25)
Cholinergic neurons in the basal forebrain participate in consciousness and general anesthesia
Leung LS, Petropoulos S, Ma J, Shen B (2004) Cholinergic neurons in the basal forebrain participate in consciousness and general anesthesia. Neuroscience 2004 Abstracts 565.4. Society for Neuroscience, San Diego, CA.
Summary: Acetylcholine (Ach) in the brain has long been associated with consciousness. In this study, we assessed consciousness in rats by their EEG and behavioral responses to a general anesthetic. Cholinergic neurons in the nucleus basalis of Meynert (NbM) were lesioned by bilateral injection of toxin IgG192-saporin (0.15 μg at P1.4, L2.7, 7.7 mm below dura) in 10 adult male rats. Control (5 rats) had saline injected into the NbM. EEGs were recorded by electrodes placed in layer V of the frontal cortex (FC) and visual cortex (VC). Spectral analysis of the spontaneous EEGs in FC and VC during awake-immobility indicated that lesioned animals showed higher delta (0.8 to 4 Hz) and lower gamma (30- 58 Hz) power as compared to controls. Subsequent acetylcholinesterase staining (optical density) confirmed significant Ach depletion in both FC and VC, in the lesion as compared to the control group (P<0.002, Wilcoxon). When challenged with a normally subanesthetic dose of general anesthetic, the lesioned rats showed, as compared to controls, significantly longer durations of loss of righting and tail-pinch response after 5 mg/kg i.v. propofol (P<0.001), but not after 20 mg/kg i.p. pentobarbital or 2% halothane. In correspondence with the deep behavioral anesthesia, delta power at FC after propofol was significantly larger in lesioned than control rats. Lesioned rats, as compared to controls, also showed decreased locomotion (behavioral excitation) when given 2% halothane in a large chamber. In summary, a loss of Ach in the neocortex decreases the level of consciousness as indicated by increased delta and decreased gamma EEG, and by an increased sedative/ anesthetic response to propofol i.v. We suggest that patients with Alzheimer disease may show altered response to some general anesthetics.
Related Products: 192-IgG-SAP (Cat. #IT-01)