Targeting Talk: Product Questions
by Dr. Douglas Lappi

Q: Our lab has been working with Orexin-SAP (Cat. #IT-20) and we need to order more to complete our experiments. Unfortunately, your website says the product is discontinued. Could you let us know why you have stopped selling Orexin-SAP? Is it possible for us to get more of it in the future?

A: Thank you for your inquiry regarding Orexin-SAP. We have been working for several months to try to produce a new lot of this targeted toxin. We discontinued the sale of this targeted toxin because we could not validate the product. We have a Quality Control (QC) assay, but the material we prepared did not perform to the level of the previous Orexin-SAP that we have been selling for several years.

Peptides made by three different suppliers have been conjugated; none performed as the previous lot of Orexin-SAP did. We don't have an explanation for why the new material doesn't work in our in vitro QC assay. We decided it was best to discontinue distribution of Orexin-SAP.

Since announcing the decision to discontinue Orexin-SAP, we have heard from several scientists, such as yourself, expressing the need for more of this targeted toxin. ATS is proud of our reputation for quality targeting reagents, and we are reluctant to promote a product for which we cannot provide QC data.

So, we came up with a solution. We do not currently have in vitro or in vivo data for any of the new lots of Orexin-SAP, and are entertaining proposals for a collaboration with experienced researchers who will test these lots and share their data with us. Collaborators will receive samples from 2-4 different lots of Orexin-SAP, and aliquots of Blank-SAP (control conjugate) will be provided at no charge.

Contact Denise Higgins (ats@ATSbio.com) if you are interested in this opportunity. We look forward to working with you.

Targeting Topics: Recent Scientific References

(continued from page 4)


This work begins to examine the role of the serotonin reuptake transporter (SERT) in the regulation of lactation homeostasis. The SERT monoclonal antibody (Cat. #AB-N09) was used for immunohistochemistry.


The authors report on a circadian oscillator in the cerebellum that is sensitive to feeding cues. Mice received icv injections of 0.12, 0.25, or 0.50 µg of OX7-SAP (Cat. #IT-02). Lesioned animals displayed attenuated food-antipatory activity, and less locomotor activity after fasting.


The authors characterized the differences caused by age on the effect of cholinergic lesions of the basal forebrain. Seven-day-old rats received 210-ng bilateral icv injections of 192-IgG-SAP (Cat. #IT-01), Eighty-day-old rats received 4-µg bilateral icv injections. Both experimental groups displayed similar behavior, indicating that development of a depleted cholinergic system yields similar results to cholinergic dysfunction in adulthood.


Brief descriptions of research done using 192-IgG-SAP (Cat. #IT-01), OX7-SAP (Cat. #IT-02), dermorphin-SAP (Cat. #IT-12), anti-SERT-SAP (Cat. #IT-23), SSP-SAP (Cat. #IT-11), anti-DBH-SAP (Cat. #IT-03), CTB-SAP (Cat. #IT-14), and other conjugates are provided.


In this work bilateral 20-ng intracortical injections of anti-DBH-SAP (Cat. #IT-03) were used to examine the role of noradrenergic neurons in the control of psychostimulant-induced impulsivity. Although β-adrenoreceptor blockade abolished this impulsivity, lesioning noradrenergic neurons in the cortex had no effect.