

Inside this issue:

8

Targeting Topics Scientific References	3
Targeting Talk Retrograde Transport	5
Targeting Tools Featured Products	7
Targeting Teaser Word Quiz	8

Newsletter Highlights

- Chronic Pain Drug (page 2)
- **Teaser Winners** (page 2)
- Upcoming Meetings (page 4)
- Fluorescent Conjugates and Flow Cytometry (page 7)

Denise Higgins, Editor

Targeting Trends

Reporting the latest news in Molecular Surgery

Targeted Toxins in Pain

Summary of contribution to "Recontres en toxinologie, 2005" by

Ronald G. Wiley, Neurology Service (127) - VA TVHS, 1310 24th Avenue, South, Nashville, TN 37212 The use of targeted toxins in neuroscience research has evolved over the past twenty-plus years from original suicide transport lesions using ricin to highly selective neuron type-specific lesions made with immunotoxins, such as anti-dopamine beta hyroxylase-saporin (anti-DBH-SAP, Cat. #IT-03), and neuropeptide-toxin conjugates, such as substance P-saporin (SP-SAP, Cat. #IT-07).

Application of these agents to experiments in the neurobiology of pain began about ten years ago with the development of anti-DBH-SAP which selectively destroys adrenergic and noradrenergic neurons, and SP-SAP which destroys neurons that express neurokinin-1 receptor

(NK-1r; Figure 1). Anti-DBH-SAP has been used to show the importance of central noradrenergic neurons in withdrawal from chronic opiate administration and in descending regulation of nociception. Intrathecal injection of SP-SAP produces robust decreases in operant responses to noxious thermal stimuli over a wide range of temperatures with preserved innate reflex nocifensive responses to noxious thermal and mechanical stimuli.^{1,2} SP-SAP also profoundly decreases operant hyperalgesia and nocifensive hyperreflexia in a variety of animal models, including topical mustard oil or capsaicin, spinal nerve ligation, carrageenan- and Freund's adjuvant-induced inflammation.^{3,4} SP-SAP reduces responding in the formalin model of persistent pain (phase II). A targeted toxin using a more stable analog of substance P (SSP-SAP, Cat. #IT-11) produces similar effects at lower doses with better specificity.5

A similar construct, dermorphin-SAP (Cat. #IT-12), eliminates mu opiate receptor-expressing neurons from the medulla or the substantia gelatinosa of the spinal cord.6 Medullary dermorphin-SAP injections produce changes in descending regulation of nociception resulting in decreased hyperalgesia and allodynia in a sciatic nerve constriction injury model of neuropathic pain.7-9 The successes of SP-SAP, SSP-SAP, and dermorphin-SAP suggest a general strategy for targeting neurons expressing specific G-protein coupled receptors. SP-SAP, and perhaps other neuropeptide-toxin conjugates, may have potential in the treatment of chronic intractable pain (see companion article on Page 2).

(continued on page 6)

Figure 1.

Effects of intrathecal SP-SAP on NK-1r-expressing rat dorsal horn neurons. A) Normal immunoperoxidase staining for NK-1r after vehicle injection (arrows).

B) Decreased NK-1r staining after intrathecal administration of SP-SAP (175 ng).

Magnification bar in B indicates 100 um. Counts of NK-1r-expressing neurons in deeper laminae revealed that cell loss was limited to the superficial laminae (I and II).

Apr-May-Jun 2006

Volume 7, Issue 2